過點A(2,1)與直線l:x-y+1=0的夾角為45°的直線方程為
x=2或y=1
x=2或y=1
分析:通過已知條件判斷出所求直線的斜率為k,結(jié)合直線經(jīng)過的點,即可得到滿足條件的直線方程.
解答:解:直線l:x-y+1=0的斜率為1,即傾斜角為45°,過點A(2,1)與直線l:x-y+1=0的夾角為45°的直線l1的斜率為:0或不存在,
∴所求直線的方程為y=1或x=2.
故答案為:x=2或y=1.
點評:本題求經(jīng)過定點且與已知直線夾角為定值的直線方程.著重考查了直線的方程與直線的位置關系等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知動點P與直x=4的距離等于它到定點F(1,0)的距離的2倍,
(1)求動點P的軌跡C的方程;
(2)點M(1,1)在所求軌跡內(nèi),且過點M的直線與曲線C交于A、B,當M是線段AB中點時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖梯形ABCD,AD∥BC,∠A=90°,過點C作CE∥AB,AD=2BC,AB=BC,,現(xiàn)將梯形沿CE折成直二面角D-EC-AB.
(1)求直線BD與平面ABCE所成角的正切值;
(2)設線段AB的中點為P,在直線DE上是否存在一點M,使得PM∥面BCD?若存在,請指出點M的位置,并證明你的結(jié)論;若不存在,請說明理由;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•淮南二模)已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)與雙曲4x2-
4
3
y2=1有相同的焦點,且橢C的離心e=
1
2
,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直三棱柱ABC-A′B′C′中,點D是BC的中點,∠ACB=90°,AC=BC=1,AA′=2,
(1)欲過點A′作一截面與平面AC'D平行,問應當怎樣畫線,寫出作法,并說明理由;
(2)求異面直線BA′與 C′D所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年安徽省皖南八校高三第一次聯(lián)考理科數(shù)學試卷 題型:解答題

(本小題滿分12分)已知橢圓過點A(a,0),B(0,b)的直

 

線傾斜角為,原點到該直線的距離為.

 

(1)求橢圓的方程;

(2)斜率小于零的直線過點D(1,0)與橢圓交于M,N兩點,若求直線MN的方程;

(3)是否存在實數(shù)k,使直線交橢圓于P、Q兩點,以PQ為直徑的圓過點D(1,0)?若存在,求出k的值;若不存在,請說明理由。

 

查看答案和解析>>

同步練習冊答案