【題目】設△ABC的內角A,B,C所對的邊分別為a,bc,滿足

(1)求角C的大。

(2)設函數(shù)f(x)=cos(2xC),將f(x)的圖象向右平移個單位長度后得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間上的最大值.

【答案】(1);(2)時,最大值為1

【解析】試題分析:1根據(jù)由正弦定理及兩角和與差角的三角函數(shù)可得,可得的值;(2由函數(shù)圖象變換可得,由求出 ,和三角函數(shù)的有界性可得結果.

試題解析:(1)∵a,b,c是△ABC的內角AB,C所對的三邊,且

∴由正弦定理得,

即(sin A-sin B)cos C=cos Bsin C,

sin Acos C=sin Bcos C+cos Bsin C=sin(BC).

ABC=π,∴sin(BC)=sin A≠0,∴cos C=1,即cos C.

C是△ABC的內角,∴C.

(2)由(1)可知f(x)=cos,g(x)=f=cos=cos(2x).

∵0≤x,∴-≤2x,∴g(x)在時,最大值為1

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的方程為, 為常數(shù)).

(1)判斷曲線的形狀;

(2)設曲線分別與軸, 軸交于點, 不同于原點),試判斷的面積是否為定值?并證明你的判斷;

(3)設直線 與曲線交于不同的兩點, ,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面,底面為梯形,,且

若點上一點且,證明:平面

二面角的大;

在線段上是否存在一點,使得?若存在,求出的長;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中心在原點,焦點在 軸上的橢圓過點,離心率為 , 是橢圓的長軸的兩個端點(位于右側),是橢圓在軸正半軸上的頂點.

1求橢圓的標準方程;

2)是否存在經(jīng)過點且斜率為的直線與橢圓交于不同兩點,使得向量共線?如果存在,求出直線方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為,( 為參數(shù)),以為極點, 軸的正半軸建立極坐標系,曲線是圓心在極軸上且經(jīng)過極點的圓,射線與曲線交于點

)求曲線的普通方程及的直角坐標方程;

)在極坐標系中, 是曲線的兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知矩陣將直線lxy-1=0變換成直線l′.

(1)求直線l′的方程;

(2)判斷矩陣A是否可逆?若可逆,求出矩陣A的逆矩陣A-1;若不可逆,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著高等級公路的迅速發(fā)展,公路綠化受到高度重視,需要大量各種苗木.某苗圃培植場對100棵“天竺桂”的移栽成活量(單位:棵)與在前三個月內澆水次數(shù)間的關系進行研究,根據(jù)以往的記錄,整理相關的數(shù)據(jù)信息如圖所示:

(1)結合圖中前4個矩形提供的數(shù)據(jù),利用最小二乘法求關于的回歸直線方程;

(2)用表示(1)中所求的回歸直線方程得到的100棵“天竺桂”的移栽成活量的估計值,當圖中余下的矩形對應的數(shù)據(jù)組的殘差的絕對值,則回歸直線方程有參考價值,試問:(1)中所得到的回歸直線方程有參考價值嗎?

(3)預測100棵“天竺桂”移栽后全部成活時,在前三個月內澆水的最佳次數(shù).

附:回歸直線方程為,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一臺機器由于使用時間較長,生產(chǎn)的零件有一些缺損按不同轉速生產(chǎn)出來的零件有缺損的統(tǒng)計數(shù)據(jù)如下表所示.

(1)作出散點圖;

(2)如果y與x線性相關,求出回歸直線方程;

(3)若實際生產(chǎn)中,允許每小時的產(chǎn)品中有缺損的零件最多為10個,那么機器的運轉速度應控制在什么范圍內?

轉速x(轉/秒)

16

14

12

8

每小時生產(chǎn)有缺損零件數(shù)y(個)

11

9

8

5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)將函數(shù)的圖像(縱坐標不變)橫坐標伸長為原來的倍,再把整個圖像向左平移個單位長度得到的圖像.當時,求函數(shù)的值域;

(2)若函數(shù)內是減函數(shù),求的取值范圍.

查看答案和解析>>

同步練習冊答案