【題目】橢圓經(jīng)過為坐標原點,線段的中點在圓上.

(1)求的方程;

(2)直線不過曲線的右焦點,與交于兩點,且與圓相切,切點在第一象限, 的周長是否為定值?并說明理由.

【答案】12

【解析】試題分析:1由題意,可得: ,從而得到的方程;

2依題意可設直線由直線與圓相切,且切點的第一象限,可得,將直線與橢圓方程聯(lián)立可得利用韋達定理表示,同時表示,同理,從而易得周長為定值.

試題解析:

1)由題意得,

由題意得, 的中點在圓上,

所以,得,

所以橢圓方程為.

2)依題意可設直線,

因為直線與圓相切,且切點的第一象限,

所以,且有,

,將直線與橢圓方程聯(lián)立

可得, , ,且

,

因為,故

另一方面

,

化簡得,同理,可得,

由此可得的周長,

的周長為定值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某群體的人均通勤時間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時.某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當)的成員自駕時,自駕群體的人均通勤時間為(單位:分鐘),而公交群體的人均通勤時間不受影響,恒為分鐘,試根據(jù)上述分析結(jié)果回答下列問題:

(1)當在什么范圍內(nèi)時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?

(2)求該地上班族的人均通勤時間的表達式;討論的單調(diào)性,并說明其實際意義.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為常數(shù),為自然對數(shù)的底數(shù))的圖象在點處的切線與該函數(shù)的圖象恰好有三個公共點,求實數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓錐的頂點為,底面圓心為,半徑為

(1)設圓錐的母線長為,求圓錐的體積;

(2)設,是底面半徑,且為線段的中點,如圖.求異面直線所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知橢圓的離心率為,點在橢圓上,若圓的一條切線(斜率存在)與橢圓C有兩個交點A,B,且.

1)求橢圓的標準方程;

2)求圓O的標準方程;

3)已知橢圓C的上頂點為M,點N在圓O上,直線MN與橢圓C相交于另一點Q,且,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若橢圓C1 和橢圓C2 的焦點相同且a1>a2.給出如下四個結(jié)論:

①橢圓C1和橢圓C2一定沒有公共點;

;

a1a2<b1b2.

其中,所有正確結(jié)論的序號是(  )

A. ②③④ B. ①③④

C. ①②④ D. ①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合是實數(shù)集的子集,如果正實數(shù)滿足:對任意都存在使得則稱為集合的一個“跨度”,已知三個命題:

(1)若為集合的“跨度”,則也是集合的“跨度”;

(2)集合的“跨度”的最大值是4;

(3)是集合的“跨度”.

這三個命題中正確的個數(shù)是()

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,邊長為的正方形與梯形所在的平面互相垂直,已知,,,點在線段.

1)證明:平面平面;

2)判斷點的位置,使得平面與平面所成的銳二面角為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圖(1)為東方體育中心,其設計方案側(cè)面的外輪廓線如圖(2)所示;曲線是以點為圓心的圓的一部分,其中,曲線是拋物線的一部分;恰好等于圓的半徑,與圓相切且.

1)若要求米,米,求的值;

2)當時,若要求不超過45米,求的取值范圍.

查看答案和解析>>

同步練習冊答案