【題目】如圖,在四棱錐P-ABCD,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,E、F、G分別是PA、PB、BC的中點

(1)證明:平面EFG∥平面PCD;

(2)若平面EFG截四棱錐P-ABCD所得截面的面積為,求四棱錐P-ABCD的體積

【答案】(1)見解析;(2)

【解析】試題分析:(1)由題可證明,進而可得。

(2)H為AD的中點,則GHEF,則平面EFG截四棱錐的截面為梯形,推導出梯形為直角梯形. 可求得結(jié)果.

試題解析:(1)因為E,F(xiàn)分別為PA,PB的中點,所以,又,所以EFCD,又F,G分別為PB,BC的中點,所以FGPC。又

。

(2)設H為AD的中點,則GHEF,,則平面EFG截四棱錐的截面為梯形,∵,又,,∴,又,,,所以梯形為直角梯形.

在直角梯形中:不防PA=AB=,

所以,

..

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購,網(wǎng)上叫外賣也開始成為不少人日常生活中不可或缺的一部分.為了解網(wǎng)絡外賣在市的普及情況, 市某調(diào)查機構(gòu)借助網(wǎng)絡進行了關于網(wǎng)絡外賣的問卷調(diào)查,并從參與調(diào)查的網(wǎng)民中抽取了200人進行抽樣分析,得到表格:(單位:人)

經(jīng)常使用網(wǎng)絡外賣

偶爾或不用網(wǎng)絡外賣

合計

男性

50

50

100

女性

60

40

100

合計

110

90

200

(1)根據(jù)表中數(shù)據(jù),能否在犯錯誤的概率不超過的前提下認為市使用網(wǎng)絡外賣的情況與性別有關?

(2)①現(xiàn)從所抽取的女網(wǎng)民中利用分層抽樣的方法再抽取5人,再從這5人中隨機選出3人贈送外賣優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用網(wǎng)絡外賣的概率;

②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機抽取10人贈送禮品,記其中經(jīng)常使用網(wǎng)絡外賣的人數(shù)為,求的數(shù)學期望和方差.

參考公式: ,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為二次函數(shù),不等式的解集是,且在區(qū)間上的最大值為12

1)求的解析式;

2)設函數(shù)上的最小值為,求的表達式及的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且過點.

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點(點均在第一象限),軸,軸分別交于兩點,且滿足(其中為坐標原點).證明:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“微信運動”是一個類似計步數(shù)據(jù)庫的公眾賬號.用戶只需以運動手環(huán)或手機協(xié)處理器的運動數(shù)據(jù)為介,然后關注該公眾號,就能看見自己與好友每日行走的步數(shù),并在同一排行榜上得以體現(xiàn).現(xiàn)隨機選取朋友圈中的50人,記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

步數(shù)/

10000以上

男生人數(shù)/

1

2

7

15

5

女性人數(shù)/

0

3

7

9

1

規(guī)定:人一天行走的步數(shù)超過8000步時被系統(tǒng)評定為“積極性”,否則為“懈怠性”.

(1)填寫下面列聯(lián)表(單位:人),并根據(jù)列表判斷是否有90%的把握認為“評定類型與性別有關”;

積極性

懈怠性

總計

總計

附:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

(2)為了進一步了解“懈怠性”人群中每個人的生活習慣,從步行數(shù)在的人群中再隨機抽取3人,求選中的人中男性人數(shù)超過女性人數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為定義在上的偶函數(shù),且當時,.

1)求當時,的解析式;

2)在網(wǎng)格中繪制的圖像;

3)若方程有四個根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,判斷是否為的極值點,并說明理由;

(2)記.若函數(shù)存在極大值,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A{x|x22x30}B{x|x22mxm240,xR,mR}

(1)AB[0,3],求實數(shù)m的值;

(2)ARB,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;

(Ⅱ)若對任意的實數(shù),都有成立,求實數(shù)的取值范圍;

(Ⅲ)若的最大值是,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案