【題目】已知橢圓的左、右焦點為的坐標滿足圓方程,且圓心滿足.
(1)求橢圓的方程;
(2)過點的直線交橢圓于、兩點,過與垂直的直線交圓于、兩點,為線段中點,若的面積 ,求的值.
【答案】(1),(2).
【解析】
(1)根據(jù)的坐標滿足圓方程可得到的值,圓心滿足,故圓心在橢圓上,將其代入可得橢圓方程;
(2)由題意可知,與直線平行,故點到直線的距離即為點到直線的距離,從而可以用表示出點到直線的距離,再用計算出弦長,從而得出關(guān)于的方程,進而得出結(jié)果.
解:(1)因為的坐標滿足圓方程,
故當時,,
即,故,
因為圓心滿足,
所以點在橢圓上,
故有,
聯(lián)立方程組,解得,
所以橢圓方程為;
(2)因為直線交圓于、兩點,為線段中點,
所以與直線垂直,
又因為直線與直線垂直,
所以與直線平行,
所以點到直線的距離即為點到直線的距離,
即點到直線的距離為,
設(shè)點
聯(lián)立方程組,
解得,
由韋達定理可得,
,
所以,
所以的面積為,
所以,
即,
兩邊同時平方,化簡得,
解得或(舍)
故.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, , .
(1)若是的充分不必要條件,求實數(shù)的取值范圍;
(2)若,“”為真命題,“”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,平面平面,△為等腰直角三角形,,四邊形為直角梯形,,,,,
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解高一新生的體質(zhì)健康狀況,對學(xué)生的體質(zhì)進行了測試. 現(xiàn)從男、女生中各隨機抽取人,把他們的測試數(shù)據(jù),按照《國家學(xué)生體質(zhì)健康標準》整理如下表. 規(guī)定:數(shù)據(jù)≥,體質(zhì)健康為合格.
等級 | 數(shù)據(jù)范圍 | 男生人數(shù) | 男生平均分 | 女生人數(shù) | 女生平均分 |
優(yōu)秀 |
| ||||
良好 |
| ||||
及格 |
| ||||
不及格 | 以下 | ||||
總計 | -- |
(I)從樣本中隨機選取一名學(xué)生,求這名學(xué)生體質(zhì)健康合格的概率;
(II)從男生樣本和女生樣本中各隨機選取一人,求恰有一人的體質(zhì)健康等級是優(yōu)秀的概率;
(III)表中優(yōu)秀、良好、及格、不及格四個等級的男生、女生平均分都接近(二者之差的絕對值不大于),但男生的總平均分卻明顯高于女生的總平均分.研究發(fā)現(xiàn),若去掉四個等級中一個等級的數(shù)據(jù),則男生、女生的總平均分也接近,請寫出去掉的這個等級.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,是某海灣旅游區(qū)的一角,其中,為了營造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會決定在直線海岸和上分別修建觀光長廊和AC,其中是寬長廊,造價是元/米,是窄長廊,造價是元/米,兩段長廊的總造價為120萬元,同時在線段上靠近點的三等分點處建一個觀光平臺,并建水上直線通道(平臺大小忽略不計),水上通道的造價是元/米.
(1) 若規(guī)劃在三角形區(qū)域內(nèi)開發(fā)水上游樂項目,要求的面積最大,那么和的長度分別為多少米?
(2) 在(1)的條件下,建直線通道還需要多少錢?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十八大以來,我國新能源產(chǎn)業(yè)迅速發(fā)展.以下是近幾年某新能源產(chǎn)品的年銷售量數(shù)據(jù):
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代碼 | 1 | 2 | 3 | 4 | 5 |
新能源產(chǎn)品年銷售(萬個) | 1.6 | 6.2 | 17.7 | 33.1 | 55.6 |
(1)請畫出上表中年份代碼與年銷量的數(shù)據(jù)對應(yīng)的散點圖,并根據(jù)散點圖判斷.
與中哪一個更適宜作為年銷售量關(guān)于年份代碼的回歸方程類型;
(2)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程,并預(yù)測2019年某新能源產(chǎn)品的銷售量(精確到0.01).
參考公式:,.
參考數(shù)據(jù):,,,,,,,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】知函數(shù).
(1)當時,求的單調(diào)區(qū)間;
(2)設(shè)函數(shù),若是的唯一極值點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線 ,M為直線上任意一點,過點M作拋物線C的兩條切線MA,MB,切點分別為A,B.
(1)當M的坐標為(0,-1)時,求過M,A,B三點的圓的方程;
(2)證明:以為直徑的圓恒過點M.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南北朝時代的偉大科學(xué)家祖暅在數(shù)學(xué)上有突出貢獻,他在實踐的基礎(chǔ)上提出祖暅原理:“冪勢既同,則積不容異”. 其含義是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平行平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等.如圖,夾在兩個平行平面之間的兩個幾何體的體積分別為,被平行于這兩個平面的任意平面截得的兩個截面面積分別為,則“相等”是“總相等”的
A. 充分而不必要條件B. 必要而不充分條件
C. 充分必要條件D. 既不充分也不必要條件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com