【題目】如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,ECD的中點(diǎn).

(Ⅰ)求證:BD⊥平面PAC;

(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;

(Ⅲ)棱PB上是否存在點(diǎn)F,使得CF∥平面PAE?說(shuō)明理由.

【答案】(Ⅰ)見(jiàn)解析;

(Ⅱ)見(jiàn)解析;

(Ⅲ)見(jiàn)解析.

【解析】

()由題意利用線面垂直的判定定理即可證得題中的結(jié)論;

()由幾何體的空間結(jié)構(gòu)特征首先證得線面垂直,然后利用面面垂直的判斷定理可得面面垂直;

()由題意,利用平行四邊形的性質(zhì)和線面平行的判定定理即可找到滿足題意的點(diǎn).

(Ⅰ)證明:因?yàn)?/span>平面,所以;

因?yàn)榈酌?/span>是菱形,所以;

因?yàn)?/span>,平面,

所以平面.

(Ⅱ)證明:因?yàn)榈酌?/span>是菱形且,所以為正三角形,所以,

因?yàn)?/span>,所以;

因?yàn)?/span>平面,平面,

所以;

因?yàn)?/span>

所以平面,

平面,所以平面平面.

(Ⅲ)存在點(diǎn)中點(diǎn)時(shí),滿足平面;理由如下:

分別取的中點(diǎn),連接,

在三角形中,;

在菱形中,中點(diǎn),所以,所以,即四邊形為平行四邊形,所以;

平面,平面,所以平面.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】依據(jù)黃河濟(jì)南段8月份的水文觀測(cè)點(diǎn)的歷史統(tǒng)計(jì)數(shù)據(jù)所繪制的頻率分布直方圖如圖()所示:依據(jù)濟(jì)南的地質(zhì)構(gòu)造,得到水位與災(zāi)害等級(jí)的頻率分布條形圖如圖()所示.

(I)以此頻率作為概率,試估計(jì)黃河濟(jì)南段在8月份發(fā)生I級(jí)災(zāi)害的概率;

(Ⅱ)黃河濟(jì)南段某企業(yè),在3月份,若沒(méi)受1、2級(jí)災(zāi)害影響,利潤(rùn)為500萬(wàn)元;若受1級(jí)災(zāi)害影響,則虧損100萬(wàn)元;若受2級(jí)災(zāi)害影響則虧損1000萬(wàn)元.

現(xiàn)此企業(yè)有如下三種應(yīng)對(duì)方案:

試問(wèn),如僅從利潤(rùn)考慮,該企業(yè)應(yīng)選擇這三種方案中的哪種方案?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線與圓交于兩點(diǎn)

1求線的垂直平分線的方程;

2,求的值;

32的條件下,求過(guò)點(diǎn)的圓的切線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),則下列判斷正確的是(

A.為奇函數(shù)

B.對(duì)任意,,則有

C.對(duì)任意,則有

D.若函數(shù)有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)解關(guān)于x的不等式;

(2)對(duì)任意的(﹣1,2),恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某班學(xué)生喜歡數(shù)學(xué)是否與性別有關(guān),對(duì)本班人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表,已知在全部人中隨機(jī)抽取人抽到喜歡數(shù)學(xué)的學(xué)生的概率為.

喜歡數(shù)學(xué)

不喜歡數(shù)學(xué)

合計(jì)

男生

女生

合計(jì)

1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(不用寫計(jì)算過(guò)程);

2)能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為喜歡數(shù)學(xué)與性別有關(guān)?說(shuō)明你的理由;

3)現(xiàn)從女生中抽取人進(jìn)一步調(diào)查,設(shè)其中喜歡數(shù)學(xué)的女生人數(shù)為,求的分布列與期望.

下面的臨界表供參考:

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)、、 為平面直角坐標(biāo)系中兩兩不同的點(diǎn)。若,,且,則稱點(diǎn)、調(diào)和分割點(diǎn)、。已知平面上點(diǎn)、調(diào)和分割點(diǎn) 、.則下面說(shuō)法正確的是()。

A. 可能是線段的中點(diǎn)

B. 可能是線段 的中點(diǎn)

C. 點(diǎn)、 可能同時(shí)在線段

D. 點(diǎn) 、不可能同時(shí)在線段的延長(zhǎng)線上

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一條直線與一個(gè)平面垂直,則稱此直線與平面構(gòu)成一個(gè)“正交線面對(duì)”.那么在一個(gè)正方體中,由兩個(gè)頂點(diǎn)確定的直線與含有四個(gè)頂點(diǎn)的平面構(gòu)成的“正交線面對(duì)”的個(gè)數(shù)是( )

A. 48 B. 36 C. 24 D. 18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】古代以六十年為一個(gè)甲子用十天干和十二地支相配六十年輪一遍,周而復(fù)始。甲子為干支之一,順序?yàn)榈谝粋(gè)前一位是癸亥,后一位是乙丑論陰陽(yáng)五行,天干之甲屬陽(yáng)之木,地支之子屬陽(yáng)之水,是水生木相生,十干與十二支按順序兩兩相配,從甲子到癸亥,共六十個(gè)組合,稱六十甲子.

問(wèn)題

12020年是己亥年,至少多少年后又是己亥年?

2)從一個(gè)已亥年到下一個(gè)己亥年,周期是多少?

3)計(jì)算i,,,…,一直計(jì)算下去,你會(huì)得到什么結(jié)論?

查看答案和解析>>

同步練習(xí)冊(cè)答案