精英家教網(wǎng)如圖,已知長方體ABCD-A′B′C′D′中,AB=2
3
,BC=2
3
,AA′=2

(1)CD和B′D′所成的角是多少度;
(2)BB′和CD′所成的角是多少度.
分析:(1)(2)利用長方體的性質和異面直線所成的角、直角三角形的邊角關系即可得出.
解答:解:(1)如圖所示.精英家教網(wǎng)
連接B′D′.
由長方體可得:CD∥C′D′.
∴∠C′D′B′即為異面直線CD和B′D′所成的角.
在長方體中,∵AB=BC=2
3

∴底面ABCD是正方形,因此A′B′C′D′是正方形.
∴∠C′D′B′=45°.
 (2)連接CD′.
由長方體可得:BB′∥CC′.
∴∠C′CD′是異面直線BB′和CD′所成的角.
在Rt△CC′D′中,
∵CC′=AA′=2,CD=AB=2
3

∴tan∠C′CD′=
CD
CC
=
3

∴∠C′CD′=60°.
點評:本題考查了長方體的性質和異面直線所成的角、直角三角形的邊角關系,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知長方體ABCD-A1B1C1D1,AB=2,AA1=1,直線BD與平面AA1B1B所成的角為30°,AE垂直BD于E,F(xiàn)為A1B1的中點.
(I)求異面直線AE與BF所成的角;
(II)求平面BDF與平面AA1B所成二面角(銳角)的大小
(III)求點A到平面BDF的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知長方體ABCD-A1B1C1D1中,AB=2
3
,AD=2
3
,AA1=2.
求:
①BC和A1C1所成的角度是多少度?
②AA1和B1C1所成的角是多少度?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知長方體ABCD-A1B1C1D1中,AB=3,AD=AA1=2,點O是線段BC1的中點,點M是OD的中點,點E是線段AB上一點,AE>BE,且A1E⊥OE.
①求AE的長;
②求二面角A1-DE-C的正切值;
③求三棱錐M-A1OE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知長方體ABCD-A′B′C′D′中,AB=2
3
,AD=2
3
,AA′=2,
(1)哪些棱所在直線與直線BA’是異面直線?
(2)直線BC與直線A’C’所成角是多少度?
(3)哪些棱所在直線與直線AA’是垂直?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•宣武區(qū)一模)如圖,已知長方體AC1中,AB=BC=1,BB1=2,連接B1C,過B點作B1C的垂線交CC1于E,交B1C于F
(1)求證:AC1⊥平面EBD;
(2)求點A到平面A1B1C的距離;
(3)求直線DE與平面A1B1C所成角的正弦值.

查看答案和解析>>

同步練習冊答案