(2013•德州二模)已知雙曲線(xiàn)
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為2,該雙曲線(xiàn)與拋物線(xiàn)y2=16x的準(zhǔn)線(xiàn)交于A,B兩點(diǎn),若|AB|=6
5
,則雙曲線(xiàn)的方程為( 。
分析:根據(jù)雙曲線(xiàn)方程,求出拋物線(xiàn)的準(zhǔn)線(xiàn)方程,利用|AB|=6
5
,即可求得結(jié)論.
解答:解:∵拋物線(xiàn)y2=16x,2p=16,p=8,∴
p
2
=4.
∴拋物線(xiàn)的準(zhǔn)線(xiàn)方程為x=-4.
設(shè)雙曲線(xiàn)與拋物線(xiàn)的準(zhǔn)線(xiàn)x=-4的兩個(gè)交點(diǎn)A(-4,y),B(-4,-y)(y>0),
則|AB|=|y-(-y)|=2y=6
5
,∴y=3
5

將x=-4,y=3
5

代入雙曲線(xiàn)C:
x2
a2
-
y2
b2
=1,得
16
a2
-
45
b2
=1
,①
又雙曲線(xiàn)
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為2,∴
c
a
=2
,
a2+b2
a2
=4
,b2=3a2
由①②得a2=1,b2=3,
∴雙曲線(xiàn)C的方程為x2-
y2
3
=1
,
故選A.
點(diǎn)評(píng):本題考查拋物線(xiàn),雙曲線(xiàn)的幾何性質(zhì),考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•德州二模)已知f(x)為R上的可導(dǎo)函數(shù),且對(duì)?x∈R,均有f(x)>f′(x),則有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•德州二模)某車(chē)間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此進(jìn)行了5次試驗(yàn),根據(jù)收集到的數(shù)據(jù)(如下表),由最小二乘法求得回歸直線(xiàn)方程
y
=0.68
x
+54.6


表中有一個(gè)數(shù)據(jù)模糊不清,請(qǐng)你推斷出該數(shù)據(jù)的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•德州二模)為了解某校教師使用多媒體進(jìn)行教學(xué)的情況,將全校200名 教師按一學(xué)期使用多媒體進(jìn)行教學(xué)的次數(shù)分成了[0,9),[10,19),[20,29),[30,39),[40,49)五層.現(xiàn)采用分層抽樣從該校教師中抽取20名教師,調(diào)查了他們上學(xué)期使用多媒體進(jìn)行教學(xué)的次數(shù),結(jié)果用莖葉圖表示如圖,據(jù)此可知該校一學(xué)期使用多媒體進(jìn)行教學(xué)的次數(shù)在[30,39)內(nèi)的教師人數(shù)為
40
40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•德州二模)某種零件按質(zhì)量標(biāo)準(zhǔn)分為1,2,3,4,5五個(gè)等級(jí),現(xiàn)從一批該零件巾隨機(jī)抽取20個(gè),對(duì)其等級(jí)進(jìn)行統(tǒng)計(jì)分析,得到頻率分布表如下
等級(jí) 1 2 3 4 5
頻率 0.05 m 0.15 0.35 n
(1)在抽取的20個(gè)零件中,等級(jí)為5的恰有2個(gè),求m,n;
(2)在(1)的條件下,從等級(jí)為3和5的所有零件中,任意抽取2個(gè),求抽取的2個(gè)零件等級(jí)恰好相同的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案