已知矩形ABCD的面積為8,當(dāng)矩形ABCD周長(zhǎng)最小時(shí),沿對(duì)角線AC

ACD折起,則三棱錐DABC外接的球表面積等于(  )

A B16π C48π D.不確定的實(shí)數(shù)

 

B

【解析】設(shè)矩形的兩鄰邊長(zhǎng)度分別為ab,則ab8

2a2b≥48,當(dāng)且僅當(dāng)ab2時(shí)等號(hào)成立.

此時(shí)四邊形ABCD為正方形,其中心到四個(gè)頂點(diǎn)的距離相等,均為2,無(wú)論怎樣折疊,其四個(gè)頂點(diǎn)都在一個(gè)半徑為2的球面上,這個(gè)球的表面積是4π×2216π.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-7-1練習(xí)卷(解析版) 題型:填空題

n(nN*)的展開(kāi)式中只有第6項(xiàng)的系數(shù)最大,則該展開(kāi)式中的常數(shù)項(xiàng)為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-5-3練習(xí)卷(解析版) 題型:解答題

如圖,在長(zhǎng)方體ABCDA1B1C1D1中,AA1AD1ECD的中點(diǎn).

(1)求證:B1EAD1.

(2)在棱AA1上是否存在一點(diǎn)P,使得DP平面B1AE?若存在,求AP的長(zhǎng);若不存在,說(shuō)明理由.

(3)若二面角AB1EA1的大小為30°,求AB的長(zhǎng).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-5-2練習(xí)卷(解析版) 題型:選擇題

如圖所示,在四邊形ABCD中,ADBC,ADABBCD45°,BAD90°.ADB沿BD折起,使平面ABD平面BCD,構(gòu)成三棱錐ABCD.則在三棱錐ABCD中,下列命題正確的是(  )

A.平面ABD平面ABC

B.平面ADC平面BDC

C.平面ABC平面BDC

D.平面ADC平面ABC

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-5-1練習(xí)卷(解析版) 題型:解答題

如圖所示是一幾何體的直觀圖、正()視圖、側(cè)()視圖、俯視圖.

(1)FPD的中點(diǎn),求證:AFPCD

(2)求幾何體BECAPD的體積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-4-2練習(xí)卷(解析版) 題型:解答題

已知等差數(shù)列{an}滿足a20,a6a8=-10.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)求數(shù)列的前n項(xiàng)和.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-4-2練習(xí)卷(解析版) 題型:選擇題

已知數(shù)列{an}滿足an1,a1,則該數(shù)列的前2 013項(xiàng)的和等于(  )

A. B3019 C1508 D013

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-3-2練習(xí)卷(解析版) 題型:填空題

ABC的內(nèi)角AB,C的對(duì)邊分別為a,b,c,已知b2,BC,則ABC的面積為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-2-1練習(xí)卷(解析版) 題型:解答題

已知二次函數(shù)f(x)ax2bx1(a>0)F(x)f(1)0,且對(duì)任意實(shí)數(shù)x均有f(x)≥0成立.

(1)F(x)的表達(dá)式;

(2)當(dāng)x[2,2]時(shí),g(x)f(x)kx是單調(diào)函數(shù),求k的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案