已知拋物線的焦點為是拋物線上橫坐標為,且位于軸上方的點,到拋物線準線的距離等于.過垂直于軸,垂足為,的中點為
(1)  求拋物線方程;
(2)  過,垂足為,求點的坐標;
(3)  以為圓心,為半徑作圓.當軸上一動點
時,討論直線與圓的位置關系.
(1)拋物線方程為.  2)
(4)  當時,直線與圓相離;當時,直線到圓相切;
時,直線與圓相交.
(1)拋物線的準線為,于是,
,拋物線方程為
(2)的坐標是.由題意得
,,則的方程為
的方程為,解方程組,得,
(3)由題意得,圓的圓心是點,半徑為
時,直線的方程為,此時,直線與圓相離,
時,直線的方程為,即為,
圓心到直線的距離
,解得時,直線與圓相離;
時,直線到圓相切;當時,直線與圓相交.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線與曲線有兩個公共點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,直線交雙曲線及其漸近線于,,,四點,求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

過圓外一點,作圓的割線,求割線被圓截得的弦的中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知矩形中,,,中心在第一象限內(nèi),且與軸的距離為一個單位,動點沿矩形一邊運動,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線的頂點在原點,焦點在軸上,斜率為的直線交兩點,若,且以為直徑的圓經(jīng)過原點,求直線和拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如果雙曲線的兩個焦點分別為,一條漸近線方程為,則該雙曲線的方程為________________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的中心在原點,左焦點為F1,其右焦點F2和右準線分別是拋物線的頂點和準線.
⑴求橢圓C的方程;
⑵若點P為橢圓上C的點,△PF1F2的內(nèi)切圓的半徑為,求點Px軸的距離;
⑶若點P為橢圓C上的一個動點,當∠F1PF2為鈍角時求點P的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題



查看答案和解析>>

同步練習冊答案