【題目】某工件的三視圖如圖所示,現(xiàn)將該工件通過切割,加工成一個(gè)體積盡可能大的長方體新工件,并使新工件的一個(gè)面落在原工件的一個(gè)面內(nèi),則原工件材料的利用率為(材料利用率=)
A.
B.
C.
D.
【答案】A
【解析】【解析】分析題意可知,問題等價(jià)于圓錐的內(nèi)接長方體的體積的最大值,設(shè)長方體的長,寬,高分別為,長方體上底面接圓錐的截面半徑為,則,如下圖所示,圓錐的軸截面如圖所示,則可知,而長方體的體積,當(dāng)且僅當(dāng),,時(shí)等號成立,此時(shí)利用率為故選A
本題主要考查立體幾何中的最值問題,與實(shí)際應(yīng)用相結(jié)合,立意新穎,屬于較難題,需要考生從實(shí)際應(yīng)用問題中提取出相應(yīng)的幾何元素,再利用基本不等式 求解,解決此類問題的兩大核心思路:一是化立體問題為平面問題,結(jié)合平面幾何的相關(guān)知識求解;二是建立目標(biāo)函數(shù)的數(shù)學(xué)思想,選擇合理的變量,或利用導(dǎo)數(shù)或 利用基本不等式,求其最值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)當(dāng)時(shí),解不等式;
(2)若關(guān)于的方程的解集中恰有一個(gè)元素,求的取值范圍;
(3)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
(2015·重慶)如題(21)圖,橢圓的左右焦點(diǎn)分別為且過的直線交橢圓于兩點(diǎn),
且。
(1)若求橢圓的標(biāo)準(zhǔn)方程。
(2)若,且,試確定橢圓離心率的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·陜西)設(shè)某校新、老校區(qū)之間開車單程所需時(shí)間為T,T只與道路暢通狀況有關(guān),對其容量為100的樣本進(jìn)行統(tǒng)計(jì),結(jié)果如下:
T(分鐘) | 25 | 30 | 35 | 40 |
頻數(shù)(次) | 20 | 30 | 40 | 10 |
(1)求T的分布列與數(shù)學(xué)期望ET;
(2)劉教授駕車從老校區(qū)出發(fā),前往新校區(qū)做一個(gè)50分鐘的講座,結(jié)束后立即返回老校區(qū),求劉教授從離開老校區(qū)到返回老校區(qū)共用時(shí)間不超過120分鐘的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】A,B兩組各有7位病人,他們服用某種藥物后的康復(fù)時(shí)間(單位:天)記錄如下:
A組:10,11,12,13,14,15,16
B組:12,13,15,16,17,14,a
假設(shè)所有病人的康復(fù)時(shí)間互相獨(dú)立,從A,B兩組隨機(jī)各選1人,A組選出的人記為甲,B組選出的人記為乙.
(Ⅰ)求甲的康復(fù)時(shí)間不少于14天的概率;
(Ⅱ)如果人康復(fù)時(shí)間的方差相等?(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱臺上、下底面分別是邊長為3和6的正方形,,且
底面,點(diǎn),分別在棱,上.
(1)若是是的中點(diǎn),證明:;
(2若//平面,二面角的余弦值為,求四面體的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x3+ax2+bx+c.
(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)設(shè)a=b=4,若函數(shù)f(x)有三個(gè)不同零點(diǎn),求c的取值范圍;
(3)求證:a2﹣3b>0是f(x)有三個(gè)不同零點(diǎn)的必要而不充分條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 ,記關(guān)于 的不等式 的解集為 .
(1)若 ,求實(shí)數(shù) 的取值范圍;
(2)若 ,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,AC=4,BC=2,D,E分別為邊AC,AB的中點(diǎn),點(diǎn)F,G分別為線段CD,BE的中點(diǎn).將△ADE沿DE折起到△A1DE的位置,使∠A1DC=60°.點(diǎn)Q為線段A1B上的一點(diǎn),如圖2.
(Ⅰ)求證:A1F⊥BE;
(Ⅱ)線段A1B上是否存在點(diǎn)Q使得FQ∥平面A1DE?若存在,求出A1Q的長,若不存在,請說明理由;
(Ⅲ)當(dāng) 時(shí),求直線GQ與平面A1DE所成角的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com