【題目】如圖是某神奇“黃金數(shù)學(xué)草”的生長圖.第1階段生長為豎直向上長為1米的枝干,第2階段在枝頭生長出兩根新的枝干,新枝干的長度是原來的,且與舊枝成120°,第3階段又在每個(gè)枝頭各長出兩根新的枝干,新枝干的長度是原來的,且與舊枝成120°,……,依次生長,直到永遠(yuǎn).
(1)求第3階段“黃金數(shù)學(xué)草”的高度;
(2)求第13階段“黃金數(shù)學(xué)草”的高度;
【答案】(1)
(2)
【解析】
(1)根據(jù)示意圖,計(jì)算出第階段、第階段生長的高度,即可求解出第階段“黃金數(shù)學(xué)草”的高度;
(2)考慮第偶數(shù)階段、第奇數(shù)階段“黃金數(shù)學(xué)草”高度的生長量之間的關(guān)系,構(gòu)造數(shù)列,利用數(shù)列求和完成第階段“黃金數(shù)學(xué)草”的高度的計(jì)算.
(1)因?yàn)榈谝浑A段: ,
所以第階段生長:,第階段的生長:,
所以第階段“黃金數(shù)學(xué)草”的高度為:;
(2)設(shè)第個(gè)階段生長的“黃金數(shù)學(xué)草”的高度為,則第個(gè)階段生長的“黃金數(shù)學(xué)草”的高度為,第階段“黃金數(shù)學(xué)草”的高度為,
所以,
所以數(shù)列按奇偶性分別成公比為等比數(shù)列,
所以
.
所以第階段“黃金數(shù)學(xué)草”的高度為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,且 .
(1)當(dāng)( 為自然對(duì)數(shù)的底)時(shí),討論的單調(diào)性;
(2)當(dāng) 時(shí),若函數(shù)存在最大值,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在《周易》中,長橫“”表示陽爻,兩個(gè)短橫“”表示陰爻.有放回地取陽爻和陰爻三次合成一卦,共有種組合方法,這便是《系辭傳》所說“太極生兩儀,兩儀生四象,四象生八卦”.有放回地取陽爻和陰爻一次有2種不同的情況,有放回地取陽爻和陰爻兩次有四種情況,有放回地取陽爻和陰爻三次,八種情況.所謂的“算卦”,就是兩個(gè)八卦的疊合,即共有放回地取陽爻和陰爻六次,得到六爻,然后對(duì)應(yīng)不同的解析.在一次所謂“算卦”中得到六爻,這六爻恰好有三個(gè)陽爻三個(gè)陰爻的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c,使等式N+都成立,
(1)猜測(cè)a,b,c的值;(2)用數(shù)學(xué)歸納法證明你的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)統(tǒng)計(jì),某蔬菜基地西紅柿畝產(chǎn)量的增加量(百千克)與某種液體肥料每畝使用量(千克)之間的對(duì)應(yīng)數(shù)據(jù)的散點(diǎn)圖,如圖所示.
(1)依據(jù)數(shù)據(jù)的散點(diǎn)圖可以看出,可用線性回歸模型擬合與的關(guān)系,請(qǐng)計(jì)算相關(guān)系數(shù)并加以說明(若,則線性相關(guān)程度很高,可用線性回歸模型擬合);
(2)求關(guān)于的回歸方程,并預(yù)測(cè)液體肥料每畝使用量為12千克時(shí),西紅柿畝產(chǎn)量的增加量約為多少?
附:相關(guān)系數(shù)公式,參考數(shù)據(jù):,.
回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知扇形的周長為8,面積是4,求扇形的圓心角.
(2)已知扇形的周長為40,當(dāng)它的半徑和圓心角取何值時(shí),才使扇形的面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題16分)某鄉(xiāng)鎮(zhèn)為了進(jìn)行美麗鄉(xiāng)村建設(shè),規(guī)劃在長為10千米的河流OC的一側(cè)建一條觀光帶,觀光帶的前一部分為曲線段OAB,設(shè)曲線段OAB為函數(shù),(單位:千米)的圖象,且曲線段的頂點(diǎn)為;觀光帶的后一部分為線段BC,如圖所示.
(1)求曲線段OABC對(duì)應(yīng)的函數(shù)的解析式;
(2)若計(jì)劃在河流OC和觀光帶OABC之間新建一個(gè)如圖所示的矩形綠化帶MNPQ,綠化帶由線段MQ,QP, PN構(gòu)成,其中點(diǎn)P在線段BC上.當(dāng)OM長為多少時(shí),綠化帶的總長度最長?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某兒童樂園在“六一”兒童節(jié)推出了一項(xiàng)趣味活動(dòng).參加活動(dòng)的兒童需轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤兩次,每次轉(zhuǎn)動(dòng)后,待轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),記錄指針?biāo)竻^(qū)域中的數(shù).設(shè)兩次記錄的數(shù)分別為x,y.獎(jiǎng)勵(lì)規(guī)則如下:
①若,則獎(jiǎng)勵(lì)玩具一個(gè);
②若,則獎(jiǎng)勵(lì)水杯一個(gè);
③其余情況獎(jiǎng)勵(lì)飲料一瓶.
假設(shè)轉(zhuǎn)盤質(zhì)地均勻,四個(gè)區(qū)域劃分均勻.小亮準(zhǔn)備參加此項(xiàng)活動(dòng).
(Ⅰ)求小亮獲得玩具的概率;
(Ⅱ)請(qǐng)比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點(diǎn)M在線段PPD//平面MAC,PA=PD=,AB=4.
(I)求證:M為PB的中點(diǎn);
(II)求二面角B-PD-A的大;
(III)求直線MC與平面BDP所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com