【題目】設(shè)首項(xiàng)為1的正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列的前n項(xiàng)和為Tn,且,其中p為常數(shù).
(1)求p的值;
(2)求證:數(shù)列{an}為等比數(shù)列;
(3)證明:“數(shù)列an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù)”的充要條件是“x=1,且y=2”.
【答案】(1)p=2;(2)見解析(3)見解析
【解析】
(1)取n=1時(shí),由得p=0或2,計(jì)算排除p=0的情況得到答案.
(2),則,相減得到3an+1=4﹣Sn+1﹣Sn,再化簡得到,得到證明.
(3)分別證明充分性和必要性,假設(shè)an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù),計(jì)算化簡得2x﹣2y﹣2=1,設(shè)k=x﹣(y﹣2),計(jì)算得到k=1,得到答案.
(1)n=1時(shí),由得p=0或2,若p=0時(shí),,
當(dāng)n=2時(shí),,解得a2=0或,
而an>0,所以p=0不符合題意,故p=2;
(2)當(dāng)p=2時(shí),①,則②,
②﹣①并化簡得3an+1=4﹣Sn+1﹣Sn③,則3an+2=4﹣Sn+2﹣Sn+1④,
④﹣③得(n∈N*),
又因?yàn)?/span>,所以數(shù)列{an}是等比數(shù)列,且;
(3)充分性:若x=1,y=2,由知an,2xan+1,2yan+2依次為,,,
滿足,即an,2xan+1,2yan+2成等差數(shù)列;
必要性:假設(shè)an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù),又,
所以,化簡得2x﹣2y﹣2=1,
顯然x>y﹣2,設(shè)k=x﹣(y﹣2),
因?yàn)?/span>x、y均為整數(shù),所以當(dāng)k≥2時(shí),2x﹣2y﹣2>1或2x﹣2y﹣2<1,
故當(dāng)k=1,且當(dāng)x=1,且y﹣2=0時(shí)上式成立,即證.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓C的中心在原點(diǎn),左焦點(diǎn),長軸為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過左焦點(diǎn)的直線交曲線C于A,B兩點(diǎn),過右焦點(diǎn)的直線交曲線C于C,D兩點(diǎn),凸四邊形ABCD為菱形,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知由樣本數(shù)據(jù)點(diǎn)集合,求得的回歸直線方程為,且,現(xiàn)發(fā)現(xiàn)兩個(gè)數(shù)據(jù)點(diǎn)和誤差較大,去除后重新求得的回歸直線l的斜率為1.2,則( )
A.變量x與y具有正相關(guān)關(guān)系B.去除后的回歸方程為
C.去除后y的估計(jì)值增加速度變快D.去除后相應(yīng)于樣本點(diǎn)的殘差為0.05
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)若,求曲線在點(diǎn)處的切線方程;
(Ⅱ)若在上恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)若數(shù)列的前項(xiàng)和, ,求證:數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=etx(t>0),過點(diǎn)P(t,0)且平行于y軸的直線與曲線C:y=f(x)的交點(diǎn)為Q,曲線C過點(diǎn)Q的切線交x軸于點(diǎn)R,若S(1,f(1)),則△PRS的面積的最小值是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個(gè)頂點(diǎn)為,焦點(diǎn)在軸上,中心在原點(diǎn).若橢圓短軸的上頂點(diǎn)到直線的距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若橢圓的下頂點(diǎn)為,設(shè)直線與橢圓相交于不同的兩點(diǎn),,當(dāng)時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)的某種產(chǎn)品被檢測出其中一項(xiàng)質(zhì)量指標(biāo)存在問題. 該企業(yè)為了檢查生產(chǎn)該產(chǎn)品的甲、乙兩條流水線的生產(chǎn)情況,隨機(jī)地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取件產(chǎn)品作為樣本,測出它們的這一項(xiàng)質(zhì)量指標(biāo)值.若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品.表 1是甲流水線樣本的頻數(shù)分布表,如圖所示是乙流水線樣本的頻率分布直方圖.
表1 甲流水線樣本的頻數(shù)分布表
質(zhì)量指標(biāo)值 | 頻數(shù) |
(1)若將頻率視為概率,某個(gè)月內(nèi)甲、乙兩條流水線均生產(chǎn)了萬件產(chǎn)品,則甲、乙兩條流水線分別生產(chǎn)出不合格品約多少件?
(2)在甲流水線抽取的樣本的不合格品中隨機(jī)抽取兩件,求兩件不合格品的質(zhì)量指標(biāo)值均偏大的概率;
(3)根據(jù)已知條件完成下面列聯(lián)表,并判斷在犯錯(cuò)誤概率不超過的前提下能否認(rèn)為“該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲、乙兩條流水線的選擇有關(guān)”?
甲生產(chǎn)線 | 乙生產(chǎn)線 | 合計(jì) | |
合格品 | |||
不合格品 | |||
合計(jì) |
附:(其中為樣本容量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)絡(luò)平臺從購買該平臺某課程的客戶中,隨機(jī)抽取了100位客戶的數(shù)據(jù),并將這100個(gè)數(shù)據(jù)按學(xué)時(shí)數(shù),客戶性別等進(jìn)行統(tǒng)計(jì),整理得到如表:
學(xué)時(shí)數(shù) |
| ||||||
男性 | 18 | 12 | 9 | 9 | 6 | 4 | 2 |
女性 | 2 | 4 | 8 | 2 | 7 | 13 | 4 |
(1)根據(jù)上表估計(jì)男性客戶購買該課程學(xué)時(shí)數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表,結(jié)果保留小數(shù)點(diǎn)后兩位);
(2)從這100位客戶中,對購買該課程學(xué)時(shí)數(shù)在20以下的女性客戶按照分層抽樣的方式隨機(jī)抽取7人,再從這7人中隨機(jī)抽取2人,求這2人購買的學(xué)時(shí)數(shù)都不低于15的概率.
(3)將購買該課程達(dá)到25學(xué)時(shí)及以上者視為“十分愛好該課程者”,25學(xué)時(shí)以下者視,為“非十分愛好該課程者”.請根據(jù)已知條件完成以下列聯(lián)表,并判斷是否有99.9%的把握認(rèn)為“十分愛好該課程者”與性別有關(guān)?
非十分愛好該課程者 | 十分愛好該課程者 | 合計(jì) | |
男性 | |||
女性 | |||
合計(jì) | 100 |
附:,
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)相同.
(Ⅰ)求拋物線的方程;
(Ⅱ)若直線與曲線都只有一個(gè)公共點(diǎn),記直線與拋物線的公共點(diǎn)為P,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com