【題目】在四棱錐P﹣ABCD中,PA⊥底面ABCD,底面ABCD為正方形,PA=AB,該四棱錐被一平面截去一部分后,剩余部分的三視圖如圖,則剩余部分體積與原四棱錐體積的比值為( )

A.
B.
C.
D.

【答案】D
【解析】解:

根據(jù)幾何體的三視圖可得;
該幾何體是過(guò)BD且平行于PA的平面截四棱錐P﹣ABCD所得的幾何體.
設(shè)AB=1,則截取的部分為三棱錐E﹣BCD,
V三棱錐EBCD= × ×1×1× =
V四棱錐PABCD= = =
剩余部分的體積V剩余部分=V四棱錐PABCD﹣V三棱錐EBCD= =
∴剩余部分體積與原四棱錐體積的比值= =
故選:D.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解由三視圖求面積、體積(求體積的關(guān)鍵是求出底面積和高;求全面積的關(guān)鍵是求出各個(gè)側(cè)面的面積).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合M={(x,y)|x+y﹣2≤0,x≥0,y≥0},集合N={ },若點(diǎn)P∈M,則P∈M∩N的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|cosx|sinx,給出下列五個(gè)說(shuō)法: ①f( π)=﹣ ;
②若|f(x1)|=|f(x2)|,則x1=x2+kπ(k∈Z);
③f(x)在區(qū)間[﹣ , ]上單調(diào)遞增;
④函數(shù)f(x)的周期為π.
⑤f(x)的圖象關(guān)于點(diǎn)( ,0)成中心對(duì)稱.
其中正確說(shuō)法的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足:f′(x)﹣f(x)=xex , 且f(0)= ,則 的最大值為(
A.0
B.
C.1
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰△ABC中,AC=BC= ,AB=2,E、F分別為AC、BC的中點(diǎn),將△EFC沿EF折起,使得C到P,得到四棱錐P﹣ABFE,且AP=BP=

(1)求證:平面EFP⊥平面ABFE;
(2)求二面角B﹣AP﹣E的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1)所示,在直角梯形ABCD中, ,E是AD的中點(diǎn),O是AC與BE的交點(diǎn).將△ABE沿BE折起到△A1BE的位置,如圖(2)所示.
(1)證明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求平面A1BC與平面A1CD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=f(x)導(dǎo)函數(shù)的圖象如圖所示,則下列說(shuō)法錯(cuò)誤的是( )

A.(﹣1,3)為函數(shù)y=f(x)的遞增區(qū)間
B.(3,5)為函數(shù)y=f(x)的遞減區(qū)間
C.函數(shù)y=f(x)在x=0處取得極大值
D.函數(shù)y=f(x)在x=5處取得極小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知U=R,M={x|﹣l≤x≤2},N={x|x≤3},則(UM)∩N=(
A.{x|2≤x≤3}
B.{x|2<x≤3}
C.{x|x≤﹣1,或2≤x≤3}
D.{x|x<﹣1,或2<x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列 的前n項(xiàng)和為Sn ,且滿足:
;② ,其中
(1)求p的值;
(2)數(shù)列 能否是等比數(shù)列?請(qǐng)說(shuō)明理由;
(3)求證:當(dāng)r 2時(shí),數(shù)列 是等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案