有20件產(chǎn)品,其中5件是次品,其余都是合格品,現(xiàn)不放回的從中依次抽2件.求:⑴第一次抽到次品的概率;⑵第一次和第二次都抽到次品的概率;⑶在第一次抽到次品的條件下,第二次抽到次品的概率.
⑴ ⑵.⑶
解析試題分析:設(shè)第一次抽到次品為事件A,第二次都抽到次品為事件B.
⑴第一次抽到次品的概率 4分
⑵ 8分
⑶在第一次抽到次品的條件下,第二次抽到次品的概率為 12分
考點:本題考查了隨機事件的概率
點評:求概率的步驟:第一步:確定事件的性質(zhì)(古典概型、互斥事件、獨立事件、獨立重復(fù)試驗),然后把所給問題歸結(jié)為四類事件中的某一種。第二步:判斷事件的運算,和事件、積事件,確定事件至少有一個發(fā)生,還是同時發(fā)生,分別運用相加或相乘事件公式。第三步:運用公式,古典概型:;互斥事件:;條件概率:;獨立事件:;n次獨立重復(fù)試驗:
科目:高中數(shù)學(xué) 來源: 題型:解答題
某網(wǎng)站用“10分制”調(diào)查一社區(qū)人們的幸福度.現(xiàn)從調(diào)查人群中隨機抽取16名, 以下莖葉圖記錄了他們的幸福度分數(shù)(以小數(shù)點前的一位數(shù)字為莖, 小數(shù)點后的一位數(shù)字為葉):
(1) 指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2) 若幸福度不低于9.5分, 則稱該人的幸福度為“極幸福”.求從這16人中隨機選取3人, 至多有1人是“極幸!钡母怕剩
(3) 以這16人的樣本數(shù)據(jù)來估計整個社區(qū)的總體數(shù)據(jù), 若從該社區(qū)(人數(shù)很多)任選3人, 記表示抽到“極幸!钡娜藬(shù), 求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
一家化妝品公司于今年三八節(jié)期間在某社區(qū)舉行了為期三天的“健康使用化妝品知識講座”.每位社區(qū)居民可以在這三天中的任意一天參加任何一個討論,也可以放棄任何一個講座(規(guī)定:各個講座達到預(yù)先設(shè)定的人數(shù)時稱為滿座).統(tǒng)計數(shù)據(jù)表明,各個講座各天滿座的概率如下表:
| 洗發(fā)水講座 | 洗面奶講座 | 護膚霜講座 | 活顏營養(yǎng)講座 | 面膜使用講座 |
3月8日 | |||||
3月9日 | |||||
3月10日 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某某種飲料每箱6聽,如果其中有兩聽不合格產(chǎn)品.
(1)質(zhì)檢人員從中隨機抽出1聽,檢測出不合格的概率多大?;
(2)質(zhì)檢人員從中隨機抽出2聽,設(shè)為檢測出不合格產(chǎn)品的聽數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
甲設(shè)計了一個摸獎游戲,在一個口袋中裝有同樣大小的10個球,分別標有數(shù)字0,1,2,……9這十個數(shù)字,摸獎?wù)呓?元錢可參加一回摸球活動,一回摸球活動的規(guī)則是:摸獎?wù)咴诿蚯跋入S機確定(預(yù)報)3個數(shù)字,然后開始在袋中不放回地摸3次球,每次摸一個,摸得3個球的數(shù)字與預(yù)先所報數(shù)字均不相同的獎1元,有1個數(shù)字相同的獎2元,2個數(shù)字相同的獎10元,3個數(shù)字相同的獎50元,設(shè)ξ為摸獎?wù)咭换厮锚劷饠?shù),求ξ的分布列和摸獎人獲利的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某商場有獎銷售中,購滿100元商品得1張獎券,多購多得。每1000張獎券為一個開獎單位,其中含特等獎1個,一等獎10個,二等獎50個。設(shè)1張獎券中特等獎、一等獎、二等獎的事件分別為A、B、C,求:
(1)P(A),P(B),P(C);
(2)1張獎券的中獎概率;
(3)1張獎券不中特等獎且不中一等獎的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題13分)已知關(guān)于x的一元二次函數(shù),分別從集合P和Q中隨機取一個數(shù)a和b得到數(shù)列。
(1)若,,列舉出所有的數(shù)對,并求函數(shù)有零點的概率;
(2)若,,求函數(shù)在區(qū)間上是增函數(shù)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
有編號為l,2,3,…,的個學(xué)生,入坐編號為1,2,3,…,的個座位.每個學(xué)生規(guī)定坐一個座位,設(shè)學(xué)生所坐的座位號與該生的編號不同的學(xué)生人數(shù)為,已知時,共有6種坐法.
(1)求的值;
(2)求隨機變量的概率分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
從一副撲克牌的紅桃花色中取5張牌,點數(shù)分別為1、2、3、4、5,甲、乙兩人玩一種游戲:
甲先取一張牌,記下點數(shù),放回后乙再取一張牌,記下點數(shù).如果兩個點數(shù)的和為偶數(shù)就算甲勝,否則算乙勝.
(Ⅰ)求甲勝且點數(shù)的和為6的事件發(fā)生的概率;
(Ⅱ)分別求出甲勝與乙勝的概率,判斷這種游戲規(guī)則公平嗎?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com