(本小題滿分13分)
已知橢圓:的右焦點(diǎn)為F,離心率,橢圓C上的點(diǎn)到F的距離的最大值為,直線l過點(diǎn)F與橢圓C交于不同的兩點(diǎn)A、B.
(1) 求橢圓C的方程;
(2) 若,求直線l的方程.
(1);(2)或。
解析試題分析:(1) 由題意知,,所以,從而,
故橢圓C的方程為 5分
(2) 容易驗(yàn)證直線l的斜率不為0,故可設(shè)直線l的方程為,代入中,
得 7分
設(shè)
則由根與系數(shù)的關(guān)系,得
9分
,
解得m=±2 11分
所以,直線l的方程為,即或 13分
考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程,橢圓的幾何性質(zhì),直線方程。
點(diǎn)評:中檔題,涉及橢圓的題目,在近些年高考題中是屢見不鮮,往往涉及求橢圓標(biāo)準(zhǔn)方程,研究直線與橢圓的位置關(guān)系。求橢圓的標(biāo)準(zhǔn)方程,主要考慮定義、a,b,c,e的關(guān)系,涉及直線于橢圓位置關(guān)系問題,往往應(yīng)用韋達(dá)定理。本題應(yīng)用弦長公式,建立了m的方程,進(jìn)一步確定得到直線方程。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示的曲線是由部分拋物線和曲線“合成”的,直線與曲線相切于點(diǎn),與曲線相切于點(diǎn),記點(diǎn)的橫坐標(biāo)為,其中.
(1)當(dāng)時(shí),求的值和點(diǎn)的坐標(biāo);
(2)當(dāng)實(shí)數(shù)取何值時(shí),?并求出此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知橢圓的離心率,且短半軸為其左右焦點(diǎn),是橢圓上動(dòng)點(diǎn).
(Ⅰ)求橢圓方程;
(Ⅱ)當(dāng)時(shí),求面積;
(Ⅲ)求取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
如圖,設(shè)點(diǎn)、分別是橢圓的左、右焦點(diǎn),為橢圓上任意一點(diǎn),且最小值為.
(1)求橢圓的方程;
(2)若動(dòng)直線均與橢圓相切,且,試探究在軸上是否存在定點(diǎn),點(diǎn)到的距離之積恒為1?若存在,請求出點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,焦點(diǎn)到相應(yīng)準(zhǔn)線的距離為
(1)求橢圓C的方程
(2)設(shè)直線與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分為12分)
已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,焦距為4,離心率為.
(I)求橢圓方程;
(II)設(shè)橢圓在y軸的正半軸上的焦點(diǎn)為M,又點(diǎn)A和點(diǎn)B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知拋物線C1:y2=4x的焦點(diǎn)與橢圓C2:的右焦點(diǎn)F2重合,F(xiàn)1是橢圓的左焦點(diǎn);
(Ⅰ)在ABC中,若A(-4,0),B(0,-3),點(diǎn)C在拋物線y2=4x上運(yùn)動(dòng),求ABC重心G的軌跡方程;
(Ⅱ)若P是拋物線C1與橢圓C2的一個(gè)公共點(diǎn),且∠PF1F2=,∠PF2F1=,求cos的值及PF1F2的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓C:=1(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(﹣c,0),F(xiàn)2(c,0),M是橢圓短軸的一個(gè)端點(diǎn),且滿足=0,點(diǎn)N( 0,3 )到橢圓上的點(diǎn)的最遠(yuǎn)距離為5
(1)求橢圓C的方程
(2)設(shè)斜率為k(k≠0)的直線l與橢圓C相交于不同的兩點(diǎn)A、B,Q為AB的中點(diǎn),;問A、B兩點(diǎn)能否關(guān)于過點(diǎn)P、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com