【題目】如圖,太湖一個(gè)角形湖灣 常數(shù)為銳角. 擬用長(zhǎng)度為為常數(shù)的圍網(wǎng)圍成一個(gè)養(yǎng)殖區(qū),有以下兩種方案可供選擇:

方案一 如圖1,圍成扇形養(yǎng)殖區(qū),其中;

方案二 如圖2,圍成三角形養(yǎng)殖區(qū),其中;

1求方案一中養(yǎng)殖區(qū)的面積;

2求方案二中養(yǎng)殖區(qū)的最大面積;

3為使養(yǎng)殖區(qū)的面積最大,應(yīng)選擇何種方案?并說(shuō)明理由.

【答案】1;2;3應(yīng)選擇方案一.

【解析】

試題分析:1借助題設(shè)條件運(yùn)用弧長(zhǎng)公式建立函數(shù)關(guān)系;2借助題設(shè)運(yùn)用余弦定理與基本不等式求解;3依據(jù)題設(shè)運(yùn)用導(dǎo)數(shù)的有關(guān)知識(shí)進(jìn)行分析探求.

試題解析:

1設(shè),則,即,所以 .

2設(shè).由余弦定理,得,所以,所以,當(dāng)且僅當(dāng)時(shí),=成立.所以 ,即.

3 ,令,則. 當(dāng)時(shí),, 所以上單調(diào)增,所以,當(dāng),總有.所以, .

答:為使養(yǎng)殖區(qū)的面積最大.應(yīng)選擇方案一.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列方程,并回答問(wèn)題:

;②;③;④;…

(1)請(qǐng)你根據(jù)這列方程的特點(diǎn)寫(xiě)出第個(gè)方程;

(2)直接寫(xiě)出第2009個(gè)方程的根;

(3)說(shuō)出這列方程的根的一個(gè)共同特點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓左、右焦點(diǎn)分別為,頂點(diǎn)過(guò)直的直線交負(fù)半軸于點(diǎn),且.

1橢圓離心;

2過(guò)、、點(diǎn)的圓恰好與直線切,求橢圓方程;

3過(guò)直線2中橢圓交于不同的兩點(diǎn),內(nèi)切圓的面積是否存在最大值?存在,個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量函數(shù)

(1)求函數(shù)的值域;

(2)求方程,在內(nèi)的所有實(shí)數(shù)根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,直線經(jīng)過(guò)點(diǎn)A (1,0).

(1)若直線與圓C相切,求直線的方程;

(2)若直線與圓C相交于P,Q兩點(diǎn),求三角形CPQ面積的最大值,并求此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>的導(dǎo)函數(shù).

(1)求方程的解集;

(2)求函數(shù)的最大值與最小值;

(3)若函數(shù)在定義域上恰有2個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法錯(cuò)誤的是( )

A. 在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高

B. 在線性回歸分析中,回歸直線不一定過(guò)樣本點(diǎn)的中心

C. 在回歸分析中, 為0.98的模型比為0.80的模型擬合的效果好

D. 自變量取值一定時(shí),因變量的取值帶有一定隨機(jī)性的兩個(gè)變量之間的關(guān)系叫做相關(guān)關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一項(xiàng)針對(duì)人們休閑方式的調(diào)查結(jié)果如下:受調(diào)查對(duì)象總計(jì)124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運(yùn)動(dòng);男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動(dòng).

(1)根據(jù)以上數(shù)據(jù)建立一個(gè)的列聯(lián)表;

(2)根據(jù)下列提供的獨(dú)立檢驗(yàn)臨界值表,你最多能有多少把握認(rèn)為性別與休閑方式有關(guān)系?

獨(dú)立檢驗(yàn)臨界值表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知焦點(diǎn)在軸上的橢圓的中心是原點(diǎn)離心率為,以橢圓的端州的兩端點(diǎn)和兩焦點(diǎn)所圍成的四邊形的周長(zhǎng)為8,直線軸交于點(diǎn)與橢圓交于不同兩點(diǎn),

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若,的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案