【題目】已知函數(shù) ,且 .
(Ⅰ)設(shè) ,求 的單調(diào)區(qū)間及極值;
(Ⅱ)證明:函數(shù) 的圖象在函數(shù) 的圖象的上方.

【答案】解:(Ⅰ)解:由 ,所以 ,解得
,所以
于是 ,則 ,由 ,
故答案為: 的遞增區(qū)間 ,遞減區(qū)間
當(dāng) 時,
(Ⅱ)證明:“函數(shù) 的圖象在函數(shù) 的圖象的上方”等價于“ ”,即要證: ,又
所以只要證
由(Ⅰ)得 ,即 (當(dāng)且僅當(dāng) 時等號成立),
所以只要證明當(dāng) 時, 即可.
設(shè) =
所以 ,令 ,解得 ,
,所以 上為增函數(shù),
所以 =0,即 ,
所以 ,故函數(shù) 的圖象在函數(shù) 的圖象的上方.
【解析】(1)利用已知條件得到關(guān)于a,b的方程組,求a,b。再用導(dǎo)函數(shù)求函數(shù)的單調(diào)區(qū)間和極值.
(2)先找到直線在函數(shù)的圖象上方,轉(zhuǎn)化為證明不等式成立,用分析法得到等價的不等式,再轉(zhuǎn)化為構(gòu)造的函數(shù)h(x)的最小值大于0即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 點(n,Sn+3)(n∈N*)在函數(shù)y=3×2x的圖象上,等比數(shù)列{bn}滿足bn+bn+1=an(n∈N*).其前n項和為Tn , 則下列結(jié)論正確的是(
A.Sn=2Tn
B.Tn=2bn+1
C.Tn>an
D.Tn<bn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=3x-x3在區(qū)間(a2-12,a)上有最小值,則實數(shù)a的取值范圍是( )
A.(-1,3)
B.(-1,2)
C.(-1,3]
D.(-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形 所在平面與等腰直角三角形 所在平面互相垂直, , , 為線段 的中點.
(Ⅰ)證明:
(Ⅱ)求 與平面 所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是( )
A.存在 ,使得 的否定是:不存在 ,使得
B.對任意 ,均有 的否定是:存在 ,使得
C.若 ,則 的否命題是:若 ,則
D.若 為假命題,則命題 必一真一假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某化工廠為預(yù)測產(chǎn)品的回收率 ,需要研究它和原料有效成分含量 之間的相關(guān)關(guān)系,現(xiàn)收集了4組對照數(shù)據(jù)。

3

4

5

6

2.5

3

4

4.5

(Ⅰ)請根據(jù)相關(guān)系數(shù) 的大小判斷回收率 之間是否存在高度線性相關(guān)關(guān)系;
(Ⅱ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出 關(guān)于 的線性回歸方程 ,并預(yù)測當(dāng) 時回收率 的值.
參考數(shù)據(jù):

1

0

其他

相關(guān)關(guān)系

完全相關(guān)

不相關(guān)

高度相關(guān)

低度相關(guān)

中度相關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱臺 中, , 分別是 , 的中點, , 平面 ,且 .

(1)證明: 平面 ;
(2)若 , 為等邊三角形,求四棱錐 的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)國家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū) 的年平均濃度不得超過3S微克/立方米, 的24小時平均濃度不得超過75微克/立方米.某市環(huán)保局隨機抽取了一居民區(qū)2016年20天 的24小時平均濃度(單位:微克/立方米)的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如圖表:

組別

濃度(微克/立方米)

頻數(shù)(天)

頻率

第一組

3

0.15

第二組

12

0.6

第三組

3

0.15

第四組

2

0.1


(Ⅰ)將這20天的測量結(jié)果按表中分組方法繪制成的樣本頻率分布直方圖如圖.
(。┣髨D中 的值;
(ⅱ)在頻率分布直方圖中估算樣本平均數(shù),并根據(jù)樣本估計總體的思想,從 的年平均濃度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說明理由.
(Ⅱ)將頻率視為概率,對于2016年的某3天,記這3天中該居民區(qū) 的24小時平均濃度符合環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)的天數(shù)為 ,求 的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖四邊形 中, 為的 內(nèi)角 的對邊,且滿足 .

(Ⅰ)證明: 成等差數(shù)列;
(Ⅱ)已知 求四邊形 的面積.

查看答案和解析>>

同步練習(xí)冊答案