(12分)已知三點
、
(-2,0)、
(2,0)。
(1)求以
、
為焦點且過點
的橢
圓的標準方程;
(2)求以
、
為頂點且以(1)中橢圓左、右頂點為焦點的雙曲線方程.
(1)
所以
,又
,所以
方程為:
(2)
,
所以
雙曲線方程為:
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
.已知點P在曲線C
1:
上,點Q在曲線C
2:(x-5)
2+y
2=1上,點R在曲線C
3:(x+5)
2+y
2=1上,則 | PQ |-| PR | 的最大值是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知定點
,定直線
,動點
(Ⅰ)、若M到點A的距離與M到直線
l的距離之比為
,試求M的軌跡曲線C
1的方程.
(Ⅱ)、若曲線C
2是以C
1的焦點為頂點,且以C
1的頂點為焦點,試求曲線C
2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)分別以雙曲線
的焦點為頂點,以雙曲線G的頂點為焦點作橢圓C。
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點P的坐標為
,在y軸上是否存在定點M,過點M且斜率為k的動直線
交橢圓于A、B兩點,使以AB為直徑的圓恒過點P,若存在,求出M的坐標;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
在平面直角坐標系中,N為圓C:
上的一動點,點D(1,0),點M是DN的中點,點P在線段CN上,且
.
(Ⅰ)求動點P表示的曲線E的方程;
(Ⅱ)若曲線E與x軸的交點為
,當動點P與A,B不重合時,設(shè)直線
與
的斜率分別為
,證明:
為定值;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知雙曲線
與圓
相切,過
的一個焦點且斜率為
的直線也與圓
相切.
(Ⅰ)求雙曲線
的方程;
(Ⅱ)
是圓
上在第一象限的點,過
且與圓
相切的直線
與
的右支交于
、
兩點,
的面積為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知點
,直線
:
,
為平面上的動點,過點
作直線
的垂線,垂足為
,且
,動點
的軌跡為
,已知圓
過定點
,圓心
在軌跡
上運動,且圓
與
軸交于
、
兩點,設(shè)
,
,則
的最大值為( ▲ )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
求與雙曲線
有共同漸近線,且過點(-3,
)的雙曲線方程;
查看答案和解析>>