【題目】記數(shù)列的前n項(xiàng)和為,其中所有奇數(shù)項(xiàng)之和為,所有偶數(shù)項(xiàng)之和為
若是等差數(shù)列,項(xiàng)數(shù)n為偶數(shù),首項(xiàng),公差,且,求;
若數(shù)列的首項(xiàng),滿(mǎn)足,其中實(shí)常數(shù),且,請(qǐng)寫(xiě)出滿(mǎn)足上述條件常數(shù)t的兩個(gè)不同的值和它們所對(duì)應(yīng)的數(shù)列.
【答案】(1)305;
(2)當(dāng)時(shí),對(duì)應(yīng)的數(shù)列為;
當(dāng)時(shí),對(duì)應(yīng)的數(shù)列為:
【解析】
(1)是等差數(shù)列,則求出,再利用等差數(shù)列前項(xiàng)和公式計(jì)算.
(2)根據(jù)與的固有關(guān)系,得出,借助于等比數(shù)列性質(zhì)解決.
解:若數(shù)列項(xiàng)數(shù)為偶數(shù),由已知,得,
解得,.
在中,
令,得,
可得
減去得:,且,
,
,當(dāng)時(shí),數(shù)列為顯然不合題意
所以,是首項(xiàng),公比的等比數(shù)列,且公比,
設(shè)項(xiàng)數(shù),,
,解得或舍,
由解得,,
所以,當(dāng)時(shí),對(duì)應(yīng)的數(shù)列為
設(shè)數(shù)列為無(wú)窮數(shù)列,
由題意,得,,
,
,
,
由解得,
當(dāng)時(shí),對(duì)應(yīng)的數(shù)列為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率是,上頂點(diǎn)B是拋物線的焦點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的兩個(gè)動(dòng)點(diǎn),且(是坐標(biāo)原點(diǎn)),試問(wèn):點(diǎn)到直線的距離是否為定值?若是,試求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,且∠DAB=60°.點(diǎn)E是棱PC的中點(diǎn),平面ABE與棱PD交于點(diǎn)F.
(1)求證:AB∥EF;
(2)若PA=PD=AD,且平面PAD⊥平面ABCD,求平面PAF與平面AFE所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知底面邊長(zhǎng)為a的正三棱柱(底面是等邊三角形的直三棱柱)的六個(gè)頂點(diǎn)在球上,且球與此正三棱柱的5個(gè)面都相切,則球與球的表面積之比為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù),若存在區(qū)間,使得,則稱(chēng)函數(shù)為“可等域函數(shù)”,區(qū)間為函數(shù)的一個(gè)“可等域區(qū)間”.給出下列4個(gè)函數(shù):
①;②; ③; ④.
其中存在唯一“可等域區(qū)間”的“可等域函數(shù)”為( )
(A)①②③ (B)②③ (C)①③ (D)②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的直角坐標(biāo)方程;
(2)若與有且僅有三個(gè)公共點(diǎn),求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,有一個(gè)長(zhǎng)方體形狀的敞口玻璃容器,底面是邊長(zhǎng)為20cm的正方形,高為30cm,內(nèi)有20cm深的溶液.現(xiàn)將此容器傾斜一定角度(圖②),且傾斜時(shí)底面的一條棱始終在桌面上(圖①、②均為容器的縱截面).
(1)要使傾斜后容器內(nèi)的溶液不會(huì)溢出,角的最大值是多少?
(2)現(xiàn)需要倒出不少于的溶液,當(dāng)時(shí),能實(shí)現(xiàn)要求嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)="xln" x–ax2+(2a–1)x,aR.
(Ⅰ)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;
(Ⅱ)已知f(x)在x=1處取得極大值.求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(1)證明:BD⊥PC;
(2)若AD=4,BC=2,設(shè)AC∩BD=O,且∠PDO=60°,求四棱錐P-ABCD的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com