精英家教網 > 高中數學 > 題目詳情

【題目】如圖,從氣球A上測得正前方的河流的兩岸B,C的俯角分別為67°,30°,此時氣球的高是46m,則河流的寬度BC約等于m.(用四舍五入法將結果精確到個位.參考數據:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80, ≈1.73)

【答案】60
【解析】解:過A點作AD垂直于CB的延長線,垂足為D,
則Rt△ACD中,∠C=30°,AD=46m,
AB= ,根據正弦定理, ,
得BC= = =60m.
故答案為:60m.

過A點作AD垂直于CB的延長線,垂足為D,分別在Rt△ACD、Rt△ABD中利用三角函數的定義,算出CD、BD的長,從而可得BC,即為河流在B、C兩地的寬度.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】私家車的尾氣排放是造成霧霾天氣的重要因素之一,因此在生活中我們應該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預防霧霾出一份力.為此,很多城市實施了機動車車尾號限行,我市某報社為了解市區(qū)公眾對車輛限行的態(tài)度,隨機抽查了50人,將調查情況進行整理后制成下表:

)完成被調查人員的頻率分布直方圖;

)若從年齡在[15,25),[2535)的被調查者中各隨機選取2人進行追蹤調查,求恰有2人不贊成的概率;

)在()的條件下,再記選中的4人中不贊成車輛限行的人數為,求隨機變量的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】ABCD為正方形,P為平面ABCD外一點,且PA⊥平面ABCD,則平面PAB與平面PBC,平面PAB與平面PAD的位置關系是(
A.平面PAB與平面PAD,PBC垂直
B.它們都分別相交且互相垂直
C.平面PAB與平面PAD垂直,與平面PBC相交但不垂直
D.平面PAB與平面PBC垂直,與平面PAD相交但不垂直

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如如圖,SD垂直于正方形ABCD所在的平面,
(1)求證:BC⊥SC;
(2)設棱SA的中點為M,求異面直線DM與SC所成角的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知橢圓 的離心率為, 為橢圓的右焦點, .

(Ⅰ)求橢圓的方程;

(Ⅱ)設為原點, 為橢圓上一點, 的中點為,直線與直線交于點,過,交直線于點,求證: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,設a、b是異面直線,AB是a、b的公垂線,過AB的中點O作平面α與a、b分別平行,M、N分別是a、b上的任意兩點,MN與α交于點P,求證:P是MN的中點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若P兩條異面直線l,m外的任意一點,則(
A.過點P有且僅有一條直線與l,m都平行
B.過點P有且僅有一條直線與l,m都垂直
C.過點P有且僅有一條直線與l,m都相交
D.過點P有且僅有一條直線與l,m都異面

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設集合U={x∈N|0<x≤8},S={1,2,4,5},T={3,5,7},則S∩(CUT)=( 。
A.{1,2,4}
B.{1,2,3,4,5,7}
C.{1,2}
D.{1,2,4,5,6,8}

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校高三期中考試后,數學教師對本次全部數學成績按進行分層抽樣,隨機抽取了20名學生的成績?yōu)闃颖荆煽冇们o葉圖記錄如圖所示,但部分數據不小心丟失,同時得到如下表所示的頻率分布表:

(Ⅰ)求表中,,的值,并估計這次考試全校高三數學成績的及格率(成績在內為及格);

(Ⅱ)設莖葉圖中成績在范圍內的樣本的中位數為,若從成績在范圍內的樣品中每次隨機抽取1個,每次取出不放回,連續(xù)取兩次,求取出兩個樣本中恰好一個是數字的概率.

查看答案和解析>>

同步練習冊答案