設(shè)橢圓的左焦點(diǎn)為F,AB為橢圓中過點(diǎn)F的弦,試分析以AB為直徑的圓與橢圓的左準(zhǔn)線的位置關(guān)系.
分析:利用橢圓的第二定義和梯形的中位線的性質(zhì)、直線與圓的位置關(guān)系的判定即可得出.
解答:解:設(shè)M為弦AB的中點(diǎn)(即以AB為直徑的圓的圓心),A1、B1、M1分別是A、B、M在準(zhǔn)線l上的射影(如圖).由圓錐曲線的共同性質(zhì)得|AB|=|AF|+|BF|=e(|AA1|+|BB1|)=2e|MM1|.
∵0<e<1,∴|AB|<2|MM1|,即
|AB|
2
<|MM1|

∴以AB為直徑的圓與左準(zhǔn)線相離.
點(diǎn)評:熟練掌握橢圓的第二定義和梯形的中位線的性質(zhì)、直線與圓的位置關(guān)系的判定是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P是橢圓
x2
4
+
y2
3
=1外的任意一點(diǎn),過點(diǎn)P的直線PA、PB分別與橢圓相切于A、B兩點(diǎn).
(1)若點(diǎn)P的坐標(biāo)為(1,2),求直線AB的方程.
(2)設(shè)橢圓的左焦點(diǎn)為F,請問:當(dāng)點(diǎn)P運(yùn)動時(shí),∠PFA與∠PFB是否總是相等?若是,請給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

設(shè)橢圓的左焦點(diǎn)為F,O為坐標(biāo)原點(diǎn),已知橢圓中心關(guān)于直線對稱點(diǎn)恰好落在橢圓的左準(zhǔn)線上。

   (1)求過O、F并且與橢圓右準(zhǔn)線l相切的圓的方程;

 
   (2)設(shè)過點(diǎn)F且不與坐標(biāo)軸垂直的直線交橢圓于M、N兩點(diǎn),線段MN的中垂線與y軸交于點(diǎn)A,求點(diǎn)A縱坐標(biāo)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆安徽省六校教育研究會高三素質(zhì)測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

點(diǎn)P是橢圓外的任意一點(diǎn),過點(diǎn)P的直線PA、PB分別與橢圓相切于A、B兩點(diǎn)。

(1)若點(diǎn)P的坐標(biāo)為,求直線的方程。

(2)設(shè)橢圓的左焦點(diǎn)為F,請問:當(dāng)點(diǎn)P運(yùn)動時(shí),是否總是相等?若是,請給出證明。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(天津卷解析版) 題型:解答題

設(shè)橢圓的左焦點(diǎn)為F, 離心率為, 過點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長為.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 設(shè)A, B分別為橢圓的左右頂點(diǎn), 過點(diǎn)F且斜率為k的直線與橢圓交于C, D兩點(diǎn). 若, 求k的值.

 

查看答案和解析>>

同步練習(xí)冊答案