在直角坐標(biāo)系xoy中,已知△ABC的頂點(diǎn)A(-1,0)和C(1,0),頂點(diǎn)B在橢圓
x2
4
+
y2
3
=1
上,則
sinA+sinC
sinB
的值是
2
2
分析:首先根據(jù)所給的橢圓的方程寫(xiě)出橢圓的長(zhǎng)軸的長(zhǎng),兩個(gè)焦點(diǎn)之間的距離,根據(jù)正弦定理得到角的正弦值之比就等于邊長(zhǎng)之比,把邊長(zhǎng)代入,得到比值
解答:解:∵橢圓的方程是
x2
4
+
y2
3
=1
,
∴a=2,即AB+CB=4
∵△ABC頂點(diǎn)A(-1,0)和C(1,0),
∴AC=2,
∵由正弦定理知
sinA+sinC
sinB
=
BC+AB
AC
=
4
2
=2,
故答案為2.
點(diǎn)評(píng):本題考查橢圓的性質(zhì)和正弦定理的應(yīng)用,解題的關(guān)鍵是把角的正弦值之比寫(xiě)成邊長(zhǎng)之比,進(jìn)而和橢圓的參數(shù)結(jié)合起來(lái),需注意特殊點(diǎn)的“巧合”,本題中,通過(guò)計(jì)算可得A、C就是焦點(diǎn),進(jìn)而結(jié)合橢圓的性質(zhì),進(jìn)行解題,其次要特別注意焦點(diǎn)三角形的有關(guān)性質(zhì)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2.F2也是拋物線(xiàn)C2:y2=4x的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且|MF2|=
5
3

(Ⅰ)求C1的方程;
(Ⅱ)平面上的點(diǎn)N滿(mǎn)足
MN
=
MF1
+
MF2
,直線(xiàn)l∥MN,且與C1交于A,B兩點(diǎn),若
OA
OB
=0
,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,已知點(diǎn)P(2cosx+1,2cos2x+2)和點(diǎn)Q(cosx,-1),其中x∈[0,π].若向量
OP
OQ
垂直,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在直角坐標(biāo)系xOy中,射線(xiàn)OA在第一象限,且與x軸的正半軸成定角60°,動(dòng)點(diǎn)P在射線(xiàn)OA上運(yùn)動(dòng),動(dòng)點(diǎn)Q在y軸的正半軸上運(yùn)動(dòng),△POQ的面積為2
3

(1)求線(xiàn)段PQ中點(diǎn)M的軌跡C的方程;
(2)R1,R2是曲線(xiàn)C上的動(dòng)點(diǎn),R1,R2到y(tǒng)軸的距離之和為1,設(shè)u為R1,R2到x軸的距離之積.問(wèn):是否存在最大的常數(shù)m,使u≥m恒成立?若存在,求出這個(gè)m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,已知圓M的方程為x2+y2-4xcosα-2ysinα+3cos2α=0(α為參數(shù)),直線(xiàn)l的參數(shù)方程為
x=tcosθ
y=1+tsinθ
(t
為參數(shù))
(I)求圓M的圓心的軌跡C的參數(shù)方程,并說(shuō)明它表示什么曲線(xiàn);
(II)求直線(xiàn)l被軌跡C截得的最大弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
2
2
,左右兩個(gè)焦分別為F1,F(xiàn)2.過(guò)右焦點(diǎn)F2且與x軸垂直的直線(xiàn)與橢圓C相交M、N兩點(diǎn),且|MN|=2.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的一個(gè)頂點(diǎn)為B(0,-b),是否存在直線(xiàn)l:y=x+m,使點(diǎn)B關(guān)于直線(xiàn)l 的對(duì)稱(chēng)點(diǎn)落在橢圓C上,若存在,求出直線(xiàn)l的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案