【題目】函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分圖象如圖所示,則函數(shù)f(x)的解析式為

【答案】f(x)= sin(2x+ ),或f(x)= sin(2x﹣
【解析】解:由函數(shù)圖象可得:A= ,周期T=4( )=π,由周期公式可得:ω= =2,
由點( ,0)在函數(shù)的圖象上,可得: sin(2× +φ)=0,
解得:φ=kπ﹣ ,k∈Z,|φ|<π,
當k=1時,可得φ= ,當k=0時,可得φ=﹣
從而得解析式可為:f(x)= sin(2x+ ),或f(x)= sin(2x﹣ ).
所以答案是:f(x)= sin(2x+ ),或f(x)= sin(2x﹣ ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an},{bn},滿足a1=b1=3,an+1﹣an= =3,n∈N* , 若數(shù)列{cn}滿足cn= ,則c2017=(
A.92016
B.272016
C.92017
D.272017

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩直線l1axby+4=0,l2:(a-1)xyb=0.求分別滿足下列條件的a,b的值:

(1)直線l1過點(-3,-1),并且直線l1l2垂直;則a____,b_______

(2)直線l1與直線l2平行,并且直線l2y軸上的截距為3.a____,b_______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx﹣ ax2﹣bx
(1)當a=b= 時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當a=0,b=﹣1時,方程f(x)=mx在區(qū)間[1,e2]內(nèi)有唯一實數(shù)解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=2ax2+(a+4)x+lnx.
(1)若f(x)在x= 處的切線與直線4x+y=0平行,求a的值;
(2)討論函數(shù)f(x)的單調(diào)區(qū)間;
(3)若函數(shù)y=f(x)的圖象與x軸交于A,B兩點,線段AB中點的橫坐標為x0 , 證明f′(x0)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)= 若f(x)恰有2個零點,則實數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增.函數(shù).

(1)請寫出函數(shù)與函數(shù)的單調(diào)區(qū)間;(只寫結(jié)論,不需證明

(2)求函數(shù)的最大值和最小值;

(3)討論方程實根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】點M(3,2)到拋物線C:y=ax2(a>0)準線的距離為4,F(xiàn)為拋物線的焦點,點N(l,l),當點P在直線l:x﹣y=2上運動時, 的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: (a>b>0)的短軸長為2,過上頂點E和右焦點F的直線與圓M:x2+y2﹣4x﹣2y+4=0相切.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l過點(1,0),且與橢圓C交于點A,B,則在x軸上是否存在一點T(t,0)(t≠0),使得不論直線l的斜率如何變化,總有∠OTA=∠OTB (其中O為坐標原點),若存在,求出 t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案