【題目】已知橢圓的離心率為,且經(jīng)過點(diǎn)

1)求橢圓的方程;

2)若不過坐標(biāo)原點(diǎn)的直線與橢圓相交于兩點(diǎn),且滿足,求面積最大時(shí)直線的方程.

【答案】1;(2

【解析】

(1)由題意列關(guān)于,,的方程組,求解,的值,則橢圓方程可求;

(2)由題意可知,直線的斜率存在,設(shè)直線的方程為,,,,,聯(lián)立直線方程與橢圓方程,化為關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系及向量等式可得,寫出三角形面積公式,得到關(guān)于的函數(shù)式,整理后利用基本不等式求最值,然后求得的方程.

(1)由題意得,解得,

所以橢圓的方程為;

(2)由題意可知,直線的斜率顯然存在,

設(shè)直線的方程為,,,

,

所以,所以,

因?yàn)?/span>,所以,

所以,代入①得,

所以

,

當(dāng)且僅當(dāng),時(shí)上式取等號(hào),此時(shí)符合題意,

所以直線的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校高三年級(jí)在開學(xué)時(shí)舉行了入學(xué)檢測(cè).為了了解本年級(jí)學(xué)生寒假期間歷史的學(xué)習(xí)情況,現(xiàn)從年級(jí)名文科生中隨機(jī)抽取了名學(xué)生本次考試的歷史成績(jī),得到他們歷史分?jǐn)?shù)的頻率分布直方圖如圖.已知本次考試高三年級(jí)歷史成績(jī)分布區(qū)間為.

1)求圖中的值;

2)根據(jù)頻率分布直方圖,估計(jì)這名學(xué)生歷史成績(jī)的平均分,眾數(shù);(每組數(shù)據(jù)用該組的區(qū)間中點(diǎn)值作代表)

3)已知該學(xué)校每年高考有%的同學(xué)歷史成績(jī)?cè)谝槐揪以上,用樣本估計(jì)總體的方法,請(qǐng)你估計(jì)本次入學(xué)檢測(cè)歷史學(xué)科劃定的一本線該為多少分?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知Sn為數(shù)列{an}的前n項(xiàng)和,且Sn+22annN*.

1)求數(shù)列{an}的通項(xiàng)公式;

2)令bn,設(shè)數(shù)列{bn}的前項(xiàng)和為Tn,若Tn,求n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016高考新課標(biāo)II,理15)有三張卡片,分別寫有12,13,23.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說:我與丙的卡片上相同的數(shù)字不是1”,丙說:我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)圖象上的各點(diǎn)的橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,再向左平移個(gè)單位,得到的圖象,下列說法正確的是(

A.點(diǎn)是函數(shù)圖象的對(duì)稱中心

B.函數(shù)上單調(diào)遞減

C.函數(shù)的圖象與函數(shù)的圖象相同

D.,是函數(shù)的零點(diǎn),則的整數(shù)倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,為橢圓上任意一點(diǎn),且已知.

1)若橢圓的短軸長(zhǎng)為,求的最大值;

2)若直線交橢圓的另一個(gè)點(diǎn)為,直線軸于點(diǎn),點(diǎn)關(guān)于直線對(duì)稱點(diǎn)為,且,三點(diǎn)共線,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)對(duì)年銷售量(單位:)的影響.該公司對(duì)近5年的年宣傳費(fèi)和年銷售量數(shù)據(jù)進(jìn)行了研究,發(fā)現(xiàn)年宣傳費(fèi)(萬元)和年銷售量(單位:)具有線性相關(guān)關(guān)系,并對(duì)數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計(jì)量的值.

(萬元)

2

4

5

3

6

(單位:

2.5

4

4.5

3

6

1)根據(jù)表中數(shù)據(jù)建立年銷售量關(guān)于年宣傳費(fèi)的回歸方程;

2)已知這種產(chǎn)品的年利潤(rùn),的關(guān)系為,根據(jù)(1)中的結(jié)果回答下列問題:

①當(dāng)年宣傳費(fèi)為10萬元時(shí),年銷售量及年利潤(rùn)的預(yù)報(bào)值是多少?

②估算該公司應(yīng)該投入多少宣傳費(fèi),才能使得年利潤(rùn)與年宣傳費(fèi)的比值最大.

附:?jiǎn)枤w方程中的斜率和截距的最小二乘估計(jì)公式分別為,.

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的焦點(diǎn)為,直線與拋物線交于兩點(diǎn).

1)若過點(diǎn),且,求的斜率;

2)若,且的斜率為,當(dāng)時(shí),求軸上的截距的取值范圍(用表示),并證明的平分線始終與軸平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,兩兩垂直,四邊形是邊長(zhǎng)為2的正方形,ACDGEF,且.

1)證明:平面.

2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案