在△ABC中,三內(nèi)角A、B、C及其對邊a、b、c,滿足a2-b2=
3
bc,sinC=
3
sinB
(Ⅰ)求角C的大小
(Ⅱ)若c=6,求△ABC面積.
分析:(I)由根據(jù)正弦定理結(jié)合sinC=
3
sinB,得c=
3
b
,代入a2-b2=
3
bc算出a=2b,從而得到△ABC是以a為斜邊的直角三角形,利用特殊三角函數(shù)值可得角C的大小;
(II)由(I)得若c=6,則Rt△ABC的兩條直角邊分別為6和2
3
,即可得到△ABC面積.
解答:解:(Ⅰ)∵在△ABC中,sinC=
3
sinB,∴根據(jù)正弦定理,得c=
3
b

又∵a2-b2=
3
bc,∴a2-b2=3b2,解之得a=2b
∴△ABC中,a:b:c=2:1:
3
,可得a2=b2+c2
△ABC是以a為斜邊的直角三角形,
∵sinC=
c
a
=
3
2
,∴C=60°   …(5分)
(Ⅱ)由(I)得a:b:c=2:1:
3

∴根據(jù)c=6,得b=2
3

∴Rt△ABC面積S=
1
2
bc=
1
2
×6×2
3
=6
3
…(9分)
點評:本題給出△ABC中的邊的關(guān)系和角的關(guān)系式,求角C的大小并依此求三角形面積,著重考查了利用正弦定理、余弦定理解三角形和三角形面積公式等知識,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sin2ω+2cos2ωx-1(ω>0)的最小正周期為2π.
(1)當x∈R時,求f(x)的值域;
(2)在△ABC中,三內(nèi)角A、B、C所對的邊分別是a、b、c,已知f(A)=1,a=2
7
,sinB=2sinC,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,三內(nèi)角A,B,C的對邊分別為a,b,c且滿足(2b-c)cosA=acosC
(Ⅰ)求角A的大。
(Ⅱ)若|
AC
-
AB
|=1,求△ABC周長l的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(
6
-2x)+2cos2x-1(x∈R)

(I)求函數(shù)f(x)的周期及單調(diào)遞增區(qū)間;
(II)在△ABC中,三內(nèi)角A,B,C的對邊分別為a,b,c,已知點(A,
1
2
)
經(jīng)過函數(shù)f(x)的圖象,b,a,c成等差數(shù)列,且
AB
AC
=9
,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,三內(nèi)角A、B、C所對應(yīng)的邊長分別為a、b、c,且A、B、C成等差數(shù)列,b=
3
,則△ABC的外接圓半徑為 ( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,三內(nèi)角A、B、C所對的邊分別為a、b、c,設(shè)向量
m
=(b-c,c-a)
,
n
=(b, c+a)
,若向量
m
n
,則角A的大小為( 。
A、
π
6
B、
π
3
C、
π
2
D、
3

查看答案和解析>>

同步練習冊答案