【題目】將函數(shù) 的圖象向左平移m(m>0)個單位長度,得到函數(shù)y=f(x)圖象在區(qū)間 上單調遞減,則m的最小值為( )
A.
B.
C.
D.
【答案】C
【解析】解:將函數(shù) 的圖象向左平移m(m>0)個單位長度,可得y=sin(2x+2m+ )的圖象; 再根據(jù)得到函數(shù)y=f(x)=sin(2x+2m+ )在區(qū)間 上單調遞減,
∴ ,k∈Z,求得m=kπ+ ,則m的最小值為 ,
故選:C.
【考點精析】解答此題的關鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關知識,掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象.
科目:高中數(shù)學 來源: 題型:
【題目】對于定義在R上的函數(shù)f(x),如果存在實數(shù)a,使得f(a+x)f(a﹣x)=1對任意實數(shù)x∈R恒成立,則稱f(x)為關于a的“倒函數(shù)”.已知定義在R上的函數(shù)f(x)是關于0和1的“倒函數(shù)”,且當x∈[0,1]時,f(x)的取值范圍為[1,2],則當x∈[1,2]時,f(x)的取值范圍為 , 當x∈[﹣2016,2016]時,f(x)的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在銳角△ABC中,內角A,B,C所對的邊分別為a,b,c,已知sin2 +cos2A= .
(1)求A的值;
(2)若a= ,求bc的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2x+alnx(a∈R).
(1)討論函數(shù)f(x)的單調性;
(2)當t≥1時,不等式f(2t﹣1)≥2f(t)﹣3恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2x+alnx(a∈R).
(1)討論函數(shù)f(x)的單調性;
(2)當t≥1時,不等式f(2t﹣1)≥2f(t)﹣3恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來共享單車在我國主要城市發(fā)展迅速.目前市場上有多種類型的共享單車,有關部門對其中三種共享單車方式(M方式、Y方式、F方式)進行統(tǒng)計(統(tǒng)計對象年齡在15~55歲),相關數(shù)據(jù)如表1,表2所示. 三種共享單車方式人群年齡比例(表1)
方式 | M | Y | F |
[15,25) | 25% | 20% | 35% |
[25,35) | 50% | 55% | 25% |
[35,45) | 20% | 20% | 20% |
[45,55] | 5% | a% | 20% |
不同性別選擇共享單車種類情況統(tǒng)計(表2)
性別 | 男 | 女 |
1 | 20% | 50% |
2 | 35% | 40% |
3 | 45% | 10% |
(Ⅰ)根據(jù)表1估算出使用Y共享單車方式人群的平均年齡;
(Ⅱ)若從統(tǒng)計對象中隨機選取男女各一人,試估計男性使用共享單車種類數(shù)大于女性使用共享單車種類數(shù)的概率;
(Ⅲ)現(xiàn)有一個年齡在25~35歲之間的共享單車用戶,那么他使用Y方式出行的概率最大,使用F方式出行的概率最小,試問此結論是否正確?(只需寫出結論)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,平面PAB⊥平面ABC,AP⊥BP,AC⊥BC,∠PAB=60°,∠ABC=45°,D是AB中點,E,F(xiàn)分別為PD,PC的中點.
(Ⅰ)求證:AE⊥平面PCD;
(Ⅱ)求二面角B﹣PA﹣C的余弦值;
(Ⅲ)在棱PB上是否存在點M,使得CM∥平面AEF?若存在,求 的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com