【題目】設(shè)a>0,b>0,若關(guān)于x,y的方程組 無解,則a+b的取值范圍為

【答案】(2,+∞)
【解析】解:∵關(guān)于x,y的方程組 無解,
∴直線ax+y=1與x+by=1平行,
∵a>0,b>0,
≠ 1 ,即a≠1,b≠1,且ab=1,則b= ,則a+b=a+ ,則設(shè)f(a)=a+ ,(a>0且a≠1),則函數(shù)的導(dǎo)數(shù)f′(a)=1﹣ = ,當(dāng)0<a<1時,f′(a)= <0,此時函數(shù)為減函數(shù),此時f(a)>f(1)=2,當(dāng)a>1時,f′(a)= >0,此時函數(shù)為增函數(shù),f(a)>f(1)=2,
綜上f(a)>2,
即a+b的取值范圍是(2,+∞),
所以答案是:(2,+∞).
【考點精析】掌握基本不等式是解答本題的根本,需要知道基本不等式:,(當(dāng)且僅當(dāng)時取到等號);變形公式:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+1|﹣|x﹣2|.
(Ⅰ)求不等式f(x)≥1的解集;
(Ⅱ)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的圖象是由函數(shù)g(x)=cosx的圖象經(jīng)過如下變換得到:先將g(x)的圖象向右平移 個單位長度,再將其圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼囊话,縱坐標(biāo)不變,則函數(shù)f(x)的圖象的一條對稱軸方程為(
A.x=
B.x=
C.x=
D.x=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體中,點是棱上的一個動點,平面交棱于點給出下列命題:

①存在點,使得//平面;

對于任意的點平面平面;

存在點,使得平面

④對于任意的點,四棱錐的體積均不變.

其中正確命題的序號是______.(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式|x﹣2|﹣|x+3|≥|m+1|有解,記實數(shù)m的最大值為M.
(1)求M的值;
(2)正數(shù)a,b,c滿足a+2b+c=M,求證: + ≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,公園有一塊邊長為2的等邊ABC的邊角地,現(xiàn)修成草坪, 圖中DE把草坪分成面積相等的兩部分,D在AB上,E在AC上

(1)設(shè)AD=x(x≥0),DE=y,求用x表示y的函數(shù)關(guān)系式,并求函數(shù)的定義域;

(2)如果DE是灌溉水管,為節(jié)約成本,希望它最短,DE的位置應(yīng)在哪里?如果DE是參觀線路,則希望它最長,DE的位置又應(yīng)在哪里?請予證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列是遞增的等比數(shù)列,a1+a4=9,a2a3=8,則數(shù)列的前n項和等于,解得a1=1,a4=8,或者a1=8,a4=1,但由于是遞增數(shù)列,即a1=1,a4=8,即q3==8,所以q=2.因而數(shù)列的前n項和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b,c是△ABC的三邊,P: , Q:方程x2 +2ax+b2 = 0與方程x2 +2cx-b2 = 0有公共根. 則P是Q的_____.(填:充分不必要條件,必要而不充分條件,充要條件,既不充分也不必要條件)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣ax﹣1(a∈R).
(1)若對任意實數(shù)x,f(x)<0恒成立,求實數(shù)a的取值范圍;
(2)當(dāng)a>0時,解關(guān)于x的不等式f(x)<2x﹣3.

查看答案和解析>>

同步練習(xí)冊答案