精英家教網 > 高中數學 > 題目詳情

【題目】是數列的前項和,已知, .

(Ⅰ)求數列的通項公式;

(Ⅱ)令,數列的前項和為,求.

【答案】(Ⅰ) ;(Ⅱ) .

【解析】試題分析:(),得,兩式相減,化簡可得,根據等比數列的通項公式可數列的通項公式;(由(Ⅰ)得 ,利用裂項相消法即可求得數列的前項和為從而可得.

試題解析:(Ⅰ)當時,由,得,

兩式相減,得 ,

.

時, , ,則.

數列是以為首項, 為公比的等比數列.

(Ⅱ)由(Ⅰ)得 .

.

【方法點晴】本題主要考查等比數列的通項以及裂項相消法求數列的和,屬于中檔題. 裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據式子的結構特點,常見的裂項技巧:(1) ;(2) ; (3);(4) ;此外,需注意裂項之后相消的過程中容易出現丟項或多項的問題,導致計算結果錯誤.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數的圖象與軸相切,且切點在軸的正半軸上.

(1)若函數上的極小值不大于,求的取值范圍;

(2)設,證明: 上的最小值為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分12分)

圍建一個面積為360m2的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進出口,如圖所示,已知舊墻的維修費用為45/m,新墻的造價為180/m,設利用的舊墻的長度為x(單位:元)。

)將y表示為x的函數;

)試確定x,使修建此矩形場地圍墻的總費用最小,并求出最小總費用。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】公元2222年,有一種高危傳染病在全球范圍內蔓延,被感染者的潛伏期可以長達10年,期間會有約0.05%的概率傳染給他人,一旦發(fā)病三天內即死亡,某城市總人口約200萬人,專家分析其中約有1000名傳染者,為了防止疾病繼續(xù)擴散,疾病預防控制中心現決定對全市人口進行血液檢測以篩選出被感染者,由于檢測試劑十分昂貴且數量有限,需要將血樣混合后一起檢測以節(jié)約試劑,已知感染者的檢測結果為陽性,末被感染者為陰性,另外檢測結果為陽性的血樣與檢測結果為陰性的血樣混合后檢測結果為陽性,同一檢測結果的血樣混合后結果不發(fā)生改變.

1)若對全市人口進行平均分組,同一分組的血樣將被混合到一起檢測,若發(fā)現結果為陽性, 則再在該分組內逐個檢測排査,設每個組個人,那么最壞情況下,需要進行多少次檢測可以找到所有的被感染者?在當前方案下,若要使檢測的次數盡可能少,每個分組的最優(yōu)人數?

2)在(1)的檢測方案中,對于檢測結果為陽性的組來取逐一檢測排査的方法并不是很好, 或可將這些組的血樣再進行一次分組混合血樣檢測,然后再進行逐一排査,仍然考慮最壞的情況,請問兩次要如何分組,使檢測總次數盡可能少?

3)在(2)的檢測方案中,進行了兩次分組混合血樣檢測,仍然考慮最壞情況,若再進行若干次分組混合血樣檢測,是否會使檢測次數更少?請給出最優(yōu)的檢測方案.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】不是直角三角形,它的三個角所對的邊分別為已知.

1求證: ;

2如果面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在邊長為25cm的正方形中挖去邊長為23cm的兩個等腰直角三角形,現有均勻的粒子散落在正方形中,問粒子落在中間帶形區(qū)域的概率是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校從參加高三模擬考試的學生中隨機抽取60名學生,將其數學成績(均為整數)分成六段[90,100),[100,110),…,[140,150)后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

求分數在[120,130)內的頻率,并補全這個頻

率分布直方圖;

統(tǒng)計方法中,同一組數據常用該組區(qū)間的中點

值作為代表,據此估計本次考試的平均分;

(3)用分層抽樣的方法在分數段為[110,130)的學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2個,求至多有1人在分數段[120,130)內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,曲線在點處的切線方程為.

1)求的解析式;

(2)證明:曲線上任一點處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正三棱柱中, 分別為的中點,設.

(1)求證:平面平面;

(2)若二面角的平面角為,求實數的值,并判斷此時二面角是否為直二面角,請說明理由.

查看答案和解析>>

同步練習冊答案