【題目】已知函數(shù)f(x)=(x2+bx+b) (b∈R)
(1)當(dāng)b=4時(shí),求f(x)的極值;
(2)若f(x)在區(qū)間(0, )上單調(diào)遞增,求b的取值范圍.
【答案】
(1)解:當(dāng)b=4時(shí),f(x)=(x2+4x+4) = (x ),
則 = .
由f′(x)=0,得x=﹣2或x=0.
當(dāng)x<﹣2時(shí),f′(x)<0,f(x)在(﹣∞,﹣2)上為減函數(shù).
當(dāng)﹣2<x<0時(shí),f′(x)>0,f(x)在(﹣2,0)上為增函數(shù).
當(dāng)0<x< 時(shí),f′(x)<0,f(x)在(0, )上為減函數(shù).
∴當(dāng)x=﹣2時(shí),f(x)取極小值為0.
當(dāng)x=0時(shí),f(x)取極大值為4
(2)解:由f(x)=(x2+bx+b) ,得:
= .
由f(x)在區(qū)間(0, )上單調(diào)遞增,
得f′(x)≥0對任意x∈(0, )恒成立.
即﹣5x2﹣3bx+2x≥0對任意x∈(0, )恒成立.
∴ 對任意x∈(0, )恒成立.
∵ .
∴ .
∴b的取值范圍是
【解析】(1)把b=4代入函數(shù)解析式,求出函數(shù)的導(dǎo)函數(shù),由導(dǎo)函數(shù)的零點(diǎn)對定義域分段,由導(dǎo)函數(shù)在各區(qū)間段內(nèi)的符號判斷原函數(shù)的單調(diào)性,從而求得極值;(2)求出原函數(shù)的導(dǎo)函數(shù),由導(dǎo)函數(shù)在區(qū)間(0, )上大于等于0恒成立,得到 對任意x∈(0, )恒成立.由單調(diào)性求出 的范圍得答案.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此作了四次試驗(yàn),得到的數(shù)據(jù)如下:
零件的個(gè)數(shù)x(個(gè)) | 2 | 3 | 4 | 5 |
加工的時(shí)間y(小時(shí)) | 2.5 | 3 | 4 | 4.5 |
(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;
(2)求出y關(guān)于x的線性回歸方程
(3)試預(yù)測加工10個(gè)零件需要多少小時(shí)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
f(x)=(cosx﹣x)(π+2x)﹣ (sinx+1)
g(x)=3(x﹣π)cosx﹣4(1+sinx)ln(3﹣ )
證明:
(1)存在唯一x0∈(0, ),使f(x0)=0;
(2)存在唯一x1∈( ,π),使g(x1)=0,且對(Ⅰ)中的x0 , 有x0+x1<π.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),函數(shù)恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的值;
(2)當(dāng)時(shí),
① 若對于任意,恒有,求的取值范圍;
② 若,求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機(jī)將1,2,…,2n(n∈N* , n≥2)這2n個(gè)連續(xù)正整數(shù)分成A、B兩組,每組n個(gè)數(shù),A組最小數(shù)為a1 , 最大數(shù)為a2;B組最小數(shù)為b1 , 最大數(shù)為b2;記ξ=a2﹣a1 , η=b2﹣b1 .
(1)當(dāng)n=3時(shí),求ξ的分布列和數(shù)學(xué)期望;
(2)C表示事件“ξ與η的取值恰好相等”,求事件C發(fā)生的概率P(C);
(3)對(2)中的事件C, 表示C的對立事件,判斷P(C)和P( )的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓: 的離心率,且橢圓上一點(diǎn)到點(diǎn)的距離的最大值為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè), 為拋物線: 上一動點(diǎn),過點(diǎn)作拋物線的切線交橢圓于兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定橢圓C:(a>b>0),稱圓C1:x2+y2=a2+b2為橢圓C的“伴隨圓”.已知橢圓C的離心率為,且經(jīng)過點(diǎn)(0,1).
(1)求實(shí)數(shù)a,b的值;
(2)若過點(diǎn)P(0,m)(m>0)的直線l與橢圓C有且只有一個(gè)公共點(diǎn),且l被橢圓C的伴隨圓C1所截得的弦長為2,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某污水處理廠要在一個(gè)矩形污水處理池的池底水平鋪設(shè)污水凈化管道(,是直角頂點(diǎn))來處理污水,管道越長,污水凈化效果越好.設(shè)計(jì)要求管道的接口是的中點(diǎn),分別落在線段上.已知米,米,記.
(1)試將污水凈化管道的長度表示為的函數(shù),并寫出定義域;
(2)若,求此時(shí)管道的長度;
(3)當(dāng)取何值時(shí),污水凈化效果最好?并求出此時(shí)管道的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com