【題目】定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱為該橢圓的特征三角形.如果兩個(gè)橢圓的特征三角形是相似的,則稱這兩個(gè)橢圓是相似橢圓,并將三角形的相似比稱為橢圓的相似比.已知橢圓

1)若橢圓,判斷是否相似?如果相似,求出的相似比;如果不相似,請(qǐng)說明理由;

2)寫出與橢圓相似且短半軸長(zhǎng)為的橢圓的方程;若在橢圓上存在兩點(diǎn)關(guān)于直線對(duì)稱,求實(shí)數(shù)的取值范圍.

【答案】(1)相似;相似比為;(2);.

【解析】

(1)分別求出兩個(gè)橢圓的特征三角形的腰長(zhǎng)和底邊長(zhǎng)2,進(jìn)而求出兩個(gè)橢圓的相似比;

(2)由題意易得與橢圓與橢圓的相似比為1:,進(jìn)而可求得橢圓得長(zhǎng)半軸長(zhǎng),即可得橢圓的方程為;設(shè)直線方程,聯(lián)立直線方程和橢圓的方程消元化簡(jiǎn),借助于的交點(diǎn)關(guān)于對(duì)稱和根的判別式大于零,可求得的取值范圍.

(1)由題意知:橢圓的特征三角形是腰長(zhǎng)為=2,底邊長(zhǎng)2=2的等腰三角形; 橢圓的特征三角形是腰長(zhǎng)為=4,底邊長(zhǎng)2=4的等腰三角形,則由,得兩個(gè)三角形相似,所以可得橢圓與橢圓相似,且相似比為;

(2)由橢圓和橢圓相似,且短半軸長(zhǎng)分別為1,可得相似比為1:,則可得橢圓的長(zhǎng)半軸長(zhǎng)為2,所以橢圓的方程為:;

由題意設(shè)直線,點(diǎn)M,N,中點(diǎn)坐標(biāo)為(),

聯(lián)立消元化簡(jiǎn)得:

,, ∴中點(diǎn)坐標(biāo)為(,)

由中點(diǎn)在直線,可得=+1,解得=,

由直線與橢圓有兩個(gè)不同的交點(diǎn)得,

代入=解得.

故實(shí)數(shù)的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個(gè)問題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還升, 升, 升,1斗為10升,則下列判斷正確的是( )

A. , 依次成公比為2的等比數(shù)列,且

B. , , 依次成公比為2的等比數(shù)列,且

C. , 依次成公比為的等比數(shù)列,且

D. , 依次成公比為的等比數(shù)列,且

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位為促進(jìn)職工業(yè)務(wù)技能提升,對(duì)該單位120名職工進(jìn)行一次業(yè)務(wù)技能測(cè)試,測(cè)試項(xiàng)目共5項(xiàng).現(xiàn)從中隨機(jī)抽取了10名職工的測(cè)試結(jié)果,將它們編號(hào)后得到它們的統(tǒng)計(jì)結(jié)果如下表(表1)所示(“√”表示測(cè)試合格,“×”表示測(cè)試不合格).

表1:

編號(hào)\測(cè)試項(xiàng)目

1

2

3

4

5

1

×

2

×

3

×

4

×

×

5

6

×

×

×

7

×

×

8

×

×

×

×

9

×

×

×

10

×

規(guī)定:每項(xiàng)測(cè)試合格得5分,不合格得0分.

(1)以抽取的這10名職工合格項(xiàng)的項(xiàng)數(shù)的頻率代替每名職工合格項(xiàng)的項(xiàng)數(shù)的概率.

①設(shè)抽取的這10名職工中,每名職工測(cè)試合格的項(xiàng)數(shù)為,根據(jù)上面的測(cè)試結(jié)果統(tǒng)計(jì)表,列出的分布列,并估計(jì)這120名職工的平均得分;

②假設(shè)各名職工的各項(xiàng)測(cè)試結(jié)果相互獨(dú)立,某科室有5名職工,求這5名職工中至少有4人得分不少于20分的概率;

(2)已知在測(cè)試中,測(cè)試難度的計(jì)算公式為,其中為第項(xiàng)測(cè)試難度,為第項(xiàng)合格的人數(shù),為參加測(cè)試的總?cè)藬?shù).已知抽取的這10名職工每項(xiàng)測(cè)試合格人數(shù)及相應(yīng)的實(shí)測(cè)難度如下表(表2):

表2:

測(cè)試項(xiàng)目

1

2

3

4

5

實(shí)測(cè)合格人數(shù)

8

8

7

7

2

定義統(tǒng)計(jì)量,其中為第項(xiàng)的實(shí)測(cè)難度,為第項(xiàng)的預(yù)測(cè)難度().規(guī)定:若,則稱該次測(cè)試的難度預(yù)測(cè)合理,否則為不合理,測(cè)試前,預(yù)估了每個(gè)預(yù)測(cè)項(xiàng)目的難度,如下表(表3)所示:

表3:

測(cè)試項(xiàng)目

1

2

3

4

5

預(yù)測(cè)前預(yù)估難度

0.9

0.8

0.7

0.6

0.4

判斷本次測(cè)試的難度預(yù)估是否合理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面上有個(gè)點(diǎn),將每一個(gè)點(diǎn)染上紅色或藍(lán)色.從這個(gè)點(diǎn)中,任取個(gè)點(diǎn),記個(gè)點(diǎn)顏色相同的所有不同取法總數(shù)為.

(1)若,求的最小值;

(2)若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一布袋中裝有個(gè)小球,甲,乙兩個(gè)同學(xué)輪流且不放回的抓球,每次最少抓一個(gè)球,最多抓三個(gè)球,規(guī)定:由乙先抓,且誰(shuí)抓到最后一個(gè)球誰(shuí)贏,那么以下推斷中正確的是( )

A. ,則乙有必贏的策略B. ,則甲有必贏的策略

C. ,則甲有必贏的策略D. ,則乙有必贏的策略

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了月至月期間月接待游客量(單位:萬(wàn)人)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)該折線圖,下列結(jié)論正確的是( )

A. 月接待游客逐月增加

B. 年接待游客量逐年減少

C. 各年的月接待游客量高峰期大致在

D. 各年月至月的月接待游客量相對(duì)于月至月,波動(dòng)性較小,變化比較穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的夾角為,,設(shè),.

1)當(dāng)時(shí),求的夾角大小;

2)是否存在實(shí)數(shù),使得的夾角為鈍角,若存在求出的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,為等邊三角形,平面平面.

(1)證明:平面平面;

(2)若,為線段的中點(diǎn),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃購(gòu)買1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.在購(gòu)進(jìn)機(jī)器時(shí),可以一次性額外購(gòu)買幾次維修服務(wù),每次維修服務(wù)費(fèi)用200元,另外實(shí)際維修一次還需向維修人員支付小費(fèi),小費(fèi)每次50元.在機(jī)器使用期間,如果維修次數(shù)超過購(gòu)機(jī)時(shí)購(gòu)買的維修服務(wù)次數(shù),則每維修一次需支付維修服務(wù)費(fèi)用500元,無(wú)需支付小費(fèi).現(xiàn)需決策在購(gòu)買機(jī)器時(shí)應(yīng)同時(shí)一次性購(gòu)買幾次維修服務(wù),為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)的維修次數(shù),得下面統(tǒng)計(jì)表:

維修次數(shù)

8

9

10

11

12

頻數(shù)

10

20

30

30

10

x表示1臺(tái)機(jī)器在三年使用期內(nèi)的維修次數(shù),y表示1臺(tái)機(jī)器在維修上所需的費(fèi)用(單位:元),表示購(gòu)機(jī)的同時(shí)購(gòu)買的維修服務(wù)次數(shù).

(1)若=10,求yx的函數(shù)解析式;

(2)若要求“維修次數(shù)不大于的頻率不小于0.8,求n的最小值;

(3)假設(shè)這100臺(tái)機(jī)器在購(gòu)機(jī)的同時(shí)每臺(tái)都購(gòu)買10次維修服務(wù),或每臺(tái)都購(gòu)買11次維修服務(wù),分別計(jì)算這100臺(tái)機(jī)器在維修上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購(gòu)買1臺(tái)機(jī)器的同時(shí)應(yīng)購(gòu)買10次還是11次維修服務(wù)?

查看答案和解析>>

同步練習(xí)冊(cè)答案