【題目】甲、乙兩人組成星隊(duì)參加猜成語(yǔ)活動(dòng),每輪活動(dòng)由甲、乙各猜一個(gè)成語(yǔ),在一輪活動(dòng)中,如果兩人都猜對(duì),則星隊(duì)3分;如果只有一個(gè)人猜對(duì),則星隊(duì)1分;如果兩人都沒(méi)猜對(duì),則星隊(duì)0分。已知甲每輪猜對(duì)的概率是,乙每輪猜對(duì)的概率是;每輪活動(dòng)中甲、乙猜對(duì)與否互不影響。各輪結(jié)果亦互不影響。假設(shè)星隊(duì)參加兩輪活動(dòng),求:

星隊(duì)至少猜對(duì)3個(gè)成語(yǔ)的概率;

星隊(duì)兩輪得分之和為X的分布列和數(shù)學(xué)期望EX

【答案】)分布列見解析,

【解析】

試題分析:()找出星隊(duì)至少猜對(duì)3個(gè)成語(yǔ)所包含的基本事件,由獨(dú)立事件的概率公式和互斥事件的概率加法公式求解;()由題意,隨機(jī)變量的可能取值為0,1,2,3,4,6.由事件的獨(dú)立性與互斥性,得到的分布列,根據(jù)期望公式求解.

試題解析:

)記事件A:“甲第一輪猜對(duì),記事件B乙第一輪猜對(duì)

記事件C甲第二輪猜對(duì),記事件D乙第二輪猜對(duì)

記事件E“‘星隊(duì)至少猜對(duì)3個(gè)成語(yǔ)”.

由題意,

由事件的獨(dú)立性與互斥性,

,

所以星隊(duì)至少猜對(duì)3個(gè)成語(yǔ)的概率為.

)由題意,隨機(jī)變量的可能取值為0,1,2,3,4,6.

由事件的獨(dú)立性與互斥性,得

,

,

,

,

,

.

可得隨機(jī)變量的分布列為


0

1

2

3

<>4

6

P







所以數(shù)學(xué)期望.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正四棱臺(tái)中,上底面邊長(zhǎng)為4,下底面邊長(zhǎng)為8,高為5,點(diǎn)分別在上,且.過(guò)點(diǎn)的平面與此四棱臺(tái)的下底面會(huì)相交,則平面與四棱臺(tái)的面的交線所圍成圖形的面積的最大值為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代儒家要求學(xué)生掌握六種基本才藝:禮、樂(lè)、射、御、書、數(shù),簡(jiǎn)稱“六藝”,某中學(xué)為弘揚(yáng)“六藝”的傳統(tǒng)文化,分別進(jìn)行了主題為“禮、樂(lè)、射、御、書、數(shù)”六場(chǎng)傳統(tǒng)文化知識(shí)的競(jìng)賽,現(xiàn)有甲、乙、丙三位選手進(jìn)入了前三名的最后角逐、規(guī)定:每場(chǎng)知識(shí)競(jìng)賽前三名的得分都分別為,且);選手最后得分為各場(chǎng)得分之和,在六場(chǎng)比賽后,已知甲最后得分為26分,乙和丙最后得分都為11分,且乙在其中一場(chǎng)比賽中獲得第一名,則下列推理正確的是( )

A. 每場(chǎng)比賽第一名得分為4 B. 甲可能有一場(chǎng)比賽獲得第二名

C. 乙有四場(chǎng)比賽獲得第三名 D. 丙可能有一場(chǎng)比賽獲得第一名

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有下列四個(gè)命題:①“若,則互為倒數(shù)”的逆命題;②“面積相等的三角形全等”的否命題;③“若,則有實(shí)數(shù)解”的逆否命題;④“若,則”的逆否命題.其中真命題為________(填寫所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知冪函數(shù)為偶函數(shù).

1)求的解析式;

2)若函數(shù)在區(qū)間(2,3)上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了治理大氣污染,某市2017年初采用了一系列措施,比如“煤改電”,“煤改氣”,“整治散落污染企業(yè)”等.下表是該市2016年11月份和2017年11月份的空氣質(zhì)量指數(shù)()(指數(shù)越小,空氣質(zhì)量越好)統(tǒng)計(jì)表.根據(jù)表中數(shù)據(jù)回答下列問(wèn)題:

(1)將2017年11月的空氣質(zhì)量指數(shù)數(shù)據(jù)用該天的對(duì)應(yīng)日期作為樣本編號(hào),再用系統(tǒng)抽樣方法從中抽取6個(gè)數(shù)據(jù),若在2017年11月16日到11月20日這五天中用簡(jiǎn)單隨機(jī)抽樣抽取到的樣本的編號(hào)是19號(hào),寫出抽出的樣本數(shù)據(jù);

(2)根據(jù)《環(huán)境空氣質(zhì)量指數(shù)()技術(shù)規(guī)定(試行)》規(guī)定:當(dāng)空氣質(zhì)量指數(shù)為(含50)時(shí),空氣質(zhì)量級(jí)別為一級(jí),用從(1)中抽出的樣本數(shù)據(jù)中隨機(jī)抽取三天的數(shù)據(jù),空氣質(zhì)量級(jí)別為一級(jí)的天數(shù)為,求的分布列及數(shù)學(xué)期望;

(3)求出這兩年11月空氣質(zhì)量指數(shù)為一級(jí)的概率,你認(rèn)為該市2017年初開始采取的這些大氣污染治理措施是否有效?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)曲線在點(diǎn)處的切線垂直于直線,求的值;

(2)討論函數(shù)零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左焦點(diǎn)為,離心率

(I)求橢圓C的標(biāo)準(zhǔn)方程;

(II)已知直線交橢圓C于A,B兩點(diǎn).

①若直線經(jīng)過(guò)橢圓C的左焦點(diǎn)F,交y軸于點(diǎn)P,且滿足.求證:為定值;

②若,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】絕對(duì)值|x1|的幾何意義是數(shù)軸上的點(diǎn)x與點(diǎn)1之間的距離,那么對(duì)于實(shí)數(shù)ab,的幾何意義即為點(diǎn)x與點(diǎn)a、點(diǎn)b的距離之和.

1)直接寫出的最小值,并寫出取到最小值時(shí)x滿足的條件;

2)設(shè)a1a2≤…≤an是給定的n個(gè)實(shí)數(shù),記S=.試猜想:若n為奇數(shù),則當(dāng)x      時(shí)S取到最小值;若n為偶數(shù),則當(dāng)x      時(shí),S取到最小值;(直接寫出結(jié)果即可)

3)求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案