如圖,PA、PB是圓O的兩條切線,A、B是切點,C是劣弧AB(不包括端點)上一點,直線PC交圓O于另一點D,Q在弦CD上,且求證:

(1);(2)

(1)詳見解析;(2)詳見解析

解析試題分析:(1)比例問題,常?紤]通過相似三角形證明在本題中,注意兩組相似三角形:△∽△,,利用這兩組相似三角形中的相似比,通過等量代換即可得證
(2)連結(jié)因為弦切角等于同弧所對的圓周角,又由已知,所以又因為同弧對的圓周角相等,所以,由此得△∽△,從而,結(jié)合(1)得,又因為,所以△∽△ 

試題解析:(1)因為△∽△,所以
同理
又因為,所以,即                  5分
(2)因為,
所以△∽△,即

又因為
所以△∽△                                         10分
考點:幾何證明

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,為圓的切線,為切點,的角平分線與和圓分別交于點.

(1)求證(2)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,AB為⊙O的直徑,直線CD與⊙O相切于E,AD垂直CDDBC垂直CDC,EF垂直ABF,連接AE,BE.證明:
 
(1)∠FEB=∠CEB
(2)EF2AD·BC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,E是⊙O內(nèi)兩弦AB和CD的交點,直線EF∥CB,交AD的延長線于F,F(xiàn)G切⊙O于G.求證:

(1)△DFE∽△EFA;
(2)EF=FG.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,若△ABC為等腰三角形,△ABC中,AB=AC,D為CB延長線上一點,E為BC延長線上一點,且滿足AB2=DB·CE.

(1)求證:△ADB∽△EAC;
(2)若∠BAC=40°,求∠DAE的度數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,已知PA與⊙O相切,A為切點,PBC為割線,CD∥AP,AD與BC相交于點E,F(xiàn)為CE上一點,且DE2=EF·EC.

(1)求證:∠P=∠EDF;
(2)求證:CE·EB=EF·EP;
(3)若CE∶BE=3∶2,DE=6,EF=4,求PA的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,AB是⊙O的直徑,弦AC=3 cm,BC=4 cm,CD⊥AB,垂足為D,求AD、BD和CD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中,,過點A的直線與其外接圓交于點P,交BC延長線于點D。

(1)求證:;
(2)若AC=3,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,弦AB與CD相交于⊙O內(nèi)一點E,過E作BC的平行線與AD的延長線相交于點P.已知PD=2DA=2,求PE.

查看答案和解析>>

同步練習冊答案