精英家教網 > 高中數學 > 題目詳情
(2011•遂寧二模)已知各項均為正數的數列{an}的前n項和Sn滿足S1>1,且6Sn=(an+1)(an+2),n∈N*
(I)求數列{an}的通項公式;
(II)設數列{bn}滿足an(2bn-1)=1,記Tn為數列{bn}的前n項和.求證:2Tn+1<log2(an+3)
分析:(I)n=1時,6a1=a12+3a1+2,且a1>1,解得a1=2.n≥2時,6Sn=an2+3an+2,6Sn-1=an-12+3an-1+2,兩式相減得(an+an-1)(an-an-1-3)=0由此能求出an
(II)根據數列{bn}滿足an(2bn-1)=1,可得bn=log2
3n
3n-1
,從而Tn=b1+b2+…+bn=log2(
3
2
×
6
5
×…×
3n
3n-1
)
,利用分析法證明.要證2Tn+1<log2(an+3),即證2log2(
3
2
×
6
5
×…×
3n
3n-1
)+1
<log2(an+3),即證
2(
3
2
×
6
5
×…×
3n
3n-1
)
2
3n+2
<1
,構造函數cn=
2(
3
2
×
6
5
×…×
3n
3n-1
)
2
3n+2
,可得{cn}是單調遞減數列,即可證出結論.
解答:(I)解:n=1時,6a1=a12+3a1+2,且a1>1,解得a1=2.
n≥2時,6Sn=an2+3an+2,6Sn-1=an-12+3an-1+2,兩式相減得(an+an-1)(an-an-1-3)=0,
∵an+an-1>0,
∴an-an-1=3,
∴{an}為等差數列,
∵a1=2,
∴an=3n-1.
(II)證明:∵數列{bn}滿足an(2bn-1)=1,
bn=log2
3n
3n-1

∴Tn=b1+b2+…+bn=log2(
3
2
×
6
5
×…×
3n
3n-1
)

要證2Tn+1<log2(an+3),即證2log2(
3
2
×
6
5
×…×
3n
3n-1
)+1
<log2(an+3)
即證(
3
2
×
6
5
×…×
3n
3n-1
)
2
3n+2
2

即證
2(
3
2
×
6
5
×…×
3n
3n-1
)
2
3n+2
<1

cn=
2(
3
2
×
6
5
×…×
3n
3n-1
)
2
3n+2

cn+1
cn
=
9n2+18n+9
9n2+21n+10
<1

∵cn>0,∴cn+1<cn
∴{cn}是單調遞減數列
cnc1=
(
3
2
)
2
3×1+2
=
9
10
<1

cn=
2(
3
2
×
6
5
×…×
3n
3n-1
)
2
3n+2
<1

故2Tn+1<log2(an+3).
點評:本題考查數列的綜合應用,解題時要認真審題,仔細解答,注意挖掘題設中的隱含條件,合理地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2011•遂寧二模)已知向量a=(sinA,cosA),b=(
3
-1),a•b=1
,且A為銳角.
(I)求角A的大;
(Ⅱ)求函數f(x)=cos2x+4cosA•sinx,x∈[
π
6
,
6
]
的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•遂寧二模)己知函數f(x)=
2x-a(x≥3)
x2-9
x-3
(x<3)
,在x=3處連續(xù),則常數a的值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•遂寧二模)已知非零向量
a
、
b
,滿足
a
b
,且
a
+2
b
a
-2
b
的夾角為120°,則
|
a
|
|
b
|
等于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•遂寧二模)函數f(x)=x3+2011x,且f-1(x)是f(x)的反函數,則(  )

查看答案和解析>>

同步練習冊答案