設(shè)P為橢圓上任意一點,F(xiàn)1,F(xiàn)2為左、右焦點.
(1)若∠F1PF2=60°,求||-||;
(2)橢圓上是否存在點P,使-=0若存在,求出P點的坐標(biāo),若不存在,試說明理由.

【答案】分析:(1)利用余弦定理及雙曲線的定義,解方程求|PF1|•|PF2|的值.
(2)假設(shè)橢圓上存在一點P(x,y),使∠F1PF2=90°,利用點在橢圓上其坐標(biāo)滿足橢圓的方程及向量垂直的條件,計算出點P的坐標(biāo),即可判斷這樣的P點是否存在.
解答:解:(1)解:∵|PF1|+|PF2|=10,
∴|PF1|2+|PF2|2=100-2|PF1|•|PF2|,…(2分)
在△PF1F2中,cos 60°=,…(4分)
∴|PF1|•|PF2|=100-2|PF1|•|PF2|-36,
∴|PF1|•|PF2|=.…(6分)
(2)設(shè)點P(x,y),則+=1.①
易知F1(-3,0),F(xiàn)2(3,0),故=(-3-x,-y),
=(-3-x,-y),
=0,∴x-9+y=0,②
由①②組成方程組,此方程組無解,故這樣的點P不存在.…(12分)
注:(2)使用定義法結(jié)合勾股定理也可說明
點評:本題主要考查橢圓標(biāo)準(zhǔn)方程,考查是否存在性問題,一般來說,是否存在性問題,通常假設(shè)存在,從而轉(zhuǎn)化為封閉型命題求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)P為橢圓數(shù)學(xué)公式上任意一點,F(xiàn)1,F(xiàn)2為左、右焦點.
(1)若∠F1PF2=60°,求|數(shù)學(xué)公式|-|數(shù)學(xué)公式|;
(2)橢圓上是否存在點P,使數(shù)學(xué)公式-數(shù)學(xué)公式=0若存在,求出P點的坐標(biāo),若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南師大附中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)P為橢圓上任意一點,F(xiàn)1,F(xiàn)2為左、右焦點.
(1)若∠F1PF2=60°,求||-||;
(2)橢圓上是否存在點P,使-=0若存在,求出P點的坐標(biāo),若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年北京市朝陽區(qū)高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

設(shè)P為橢圓上任意一點,O為坐標(biāo)原點,F(xiàn)為橢圓的左焦點,點M滿足,則=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓+= 1,過橢圓中心的直線l交橢圓于A、B兩點,且與x軸成60º角,設(shè)P為橢圓上任意一點,則△PAB的面積的最大值是          。

查看答案和解析>>

同步練習(xí)冊答案