【題目】如圖,在四棱錐P﹣ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD= ,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點(diǎn).
(1)求證:PO⊥平面ABCD;
(2)求異面直線PB與CD所成角的余弦值;
(3)線段AD上是否存在點(diǎn)Q,使得它到平面PCD的距離為 ?若存在,求出 的值;若不存在,請說明理由.
【答案】
(1)證明:在△PAD卡中PA=PD,O為AD中點(diǎn),所以PO⊥AD.
又側(cè)面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO平面PAD,
所以PO⊥平面ABCD
(2)解:連接BO,在直角梯形ABCD中,BC∥AD,AD=2AB=2BC,
有OD∥BC且OD=BC,所以四邊形OBCD是平行四邊形,
所以O(shè)B∥DC.
由(1)知PO⊥OB,∠PBO為銳角,
所以∠PBO是異面直線PB與CD所成的角.
因為AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,所以O(shè)B= ,
在Rt△POA中,因為AP= ,AO=1,所以O(shè)P=1,
在Rt△PBO中,PB= ,所以cos∠PBO= ,
所以異面直線PB與CD所成的角的余弦值為
(3)解:假設(shè)存在點(diǎn)Q,使得它到平面PCD的距離為 .
設(shè)QD=x,則S△DQC= x,由(2)得CD=OB= ,
在Rt△POC中,PC= ,
所以PC=CD=DP,S△PCD= = ,
由Vp﹣DQC=VQ﹣PCD,得x= ,所以存在點(diǎn)Q滿足題意,此時 = .
【解析】(1)根據(jù)線面垂直的判定定理可知,只需證直線PO垂直平面ABCD中的兩條相交直線垂直即可;(2)先通過平移將兩條異面直線平移到同一個起點(diǎn)B,得到的銳角或直角就是異面直線所成的角,在三角形中再利用余弦定理求出此角即可;(3)利用Vp﹣DQC=VQ﹣PCD , 即可得出結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,A=60°,a=3.
(1)若b=2,求cosB;
(2)求△ABC的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)當(dāng)曲線在點(diǎn)處的切線的斜率大于時,求函數(shù)的單調(diào)區(qū)間;
(2)若 對恒成立,求的取值范圍.(提示:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), ,其中, .
(1)若的一個極值點(diǎn)為,求的單調(diào)區(qū)間與極小值;
(2)當(dāng)時, , , ,且在上有極值,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x+2)2+y2=1,P(x,y)為圓C上任一點(diǎn),
(1)求 的最大、最小值;
(2)求x﹣2y的最大、最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各組函數(shù)中,f(x)與g(x)表示同一個函數(shù)的是( )
A.
B.
C.f(x)=x,g(x)=(x﹣1)0
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的奇函數(shù),且時, ,則函數(shù)(為自然對數(shù)的底數(shù))的零點(diǎn)個數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司即將推車一款新型智能手機(jī),為了更好地對產(chǎn)品進(jìn)行宣傳,需預(yù)估市民購買該款手機(jī)是否與年齡有關(guān),現(xiàn)隨機(jī)抽取了50名市民進(jìn)行購買意愿的問卷調(diào)查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強(qiáng),調(diào)查結(jié)果用莖葉圖表示如圖所示.
(1)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為市民是否購買該款手機(jī)與年齡有關(guān)?
購買意愿強(qiáng) | 購買意愿弱 | 合計 | |
20~40歲 | |||
大于40歲 | |||
合計 |
(2)從購買意愿弱的市民中按年齡進(jìn)行分層抽樣,共抽取5人,從這5人中隨機(jī)抽取2人進(jìn)行采訪,記抽到的2人中年齡大于40歲的市民人數(shù)為,求的分布列和數(shù)學(xué)期望.
附: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過原點(diǎn)的直線與橢圓交于兩點(diǎn),點(diǎn)為橢圓上不同于的一點(diǎn),直線的斜率均存在,且直線的斜率之積為.
(1)求橢圓的離心率;
(2)設(shè)分別為橢圓的左、右焦點(diǎn),斜率為的直線經(jīng)過橢圓的右焦點(diǎn),且與橢圓交于兩點(diǎn).若點(diǎn)在以為直徑的圓內(nèi)部,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com