已知橢圓的長(zhǎng)軸兩端點(diǎn)分別為,是橢圓上的動(dòng)點(diǎn),以為一邊在軸下方作矩形,使于點(diǎn),于點(diǎn)

(Ⅰ)如圖(1),若,且為橢圓上頂點(diǎn)時(shí),的面積為12,點(diǎn)到直線的距離為,求橢圓的方程;
(Ⅱ)如圖(2),若,試證明:成等比數(shù)列.

(Ⅰ);(Ⅱ)詳見(jiàn)解析.

解析試題分析:(Ⅰ)由的面積為12,點(diǎn)到直線的距離為,列出關(guān)于的方程求解;(Ⅱ)用坐標(biāo)表示各點(diǎn),然后求出的長(zhǎng),計(jì)算比較即可.
試題解析:(Ⅰ)如圖1,當(dāng)時(shí),過(guò)點(diǎn),
的面積為12,,即.①               2分
此時(shí)直線方程為
∴點(diǎn)的距離. ②    4分
由①②解得.            6分
∴所求橢圓方程為.      7分
(Ⅱ)如圖2,當(dāng)時(shí),,設(shè),
三點(diǎn)共線,及
(說(shuō)明:也可通過(guò)求直線方程做)
,
,即.  9分
三點(diǎn)共線,及,
,
,即.  11分
.            13分
.  15分
,即有成等比數(shù)列.                      16分
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程、點(diǎn)到直線的距離、等比數(shù)列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知左焦點(diǎn)為的橢圓過(guò)點(diǎn).過(guò)點(diǎn)分別作斜率為的橢圓的動(dòng)弦,設(shè)分別為線段的中點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若為線段的中點(diǎn),求;
(3)若,求證直線恒過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線的焦點(diǎn)為,過(guò)任作直線(軸不平行)交拋物線分別于兩點(diǎn),點(diǎn)關(guān)于軸對(duì)稱(chēng)點(diǎn)為,

(1)求證:直線軸交點(diǎn)必為定點(diǎn);
(2)過(guò)分別作拋物線的切線,兩條切線交于,求的最小值,并求當(dāng)取最小值時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:=1(a>b>0)的焦距為4,且與橢圓x2=1有相同的離心率,斜率為k的直線l經(jīng)過(guò)點(diǎn)M(0,1),與橢圓C交于不同的兩點(diǎn)A、B.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

拋物線與直線相切,是拋物線上兩個(gè)動(dòng)點(diǎn),為拋物線的焦點(diǎn),的垂直平分線軸交于點(diǎn),且.
(1)求的值;
(2)求點(diǎn)的坐標(biāo);
(3)求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知橢圓的上、下頂點(diǎn)分別為,點(diǎn)在橢圓上,且異于點(diǎn),直線與直線分別交于點(diǎn),

(Ⅰ)設(shè)直線的斜率分別為,求證:為定值;
(Ⅱ)求線段的長(zhǎng)的最小值;
(Ⅲ)當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),以為直徑的圓是否經(jīng)過(guò)某定點(diǎn)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:的離心率等于,點(diǎn)P在橢圓上。
(1)求橢圓的方程;
(2)設(shè)橢圓的左右頂點(diǎn)分別為,過(guò)點(diǎn)的動(dòng)直線與橢圓相交于兩點(diǎn),是否存在定直線,使得的交點(diǎn)總在直線上?若存在,求出一個(gè)滿(mǎn)足條件的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

極坐標(biāo)系中橢圓C的方程為以極點(diǎn)為原點(diǎn),極軸為軸非負(fù)半軸,建立平面直角坐標(biāo)系,且兩坐標(biāo)系取相同的單位長(zhǎng)度.
(Ⅰ)求該橢圓的直角標(biāo)方程;若橢圓上任一點(diǎn)坐標(biāo)為,求的取值范圍;
(Ⅱ)若橢圓的兩條弦交于點(diǎn),且直線的傾斜角互補(bǔ),
求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的兩個(gè)焦點(diǎn)分別為,且,點(diǎn)在橢圓上,且的周長(zhǎng)為6.
(I)求橢圓的方程;
(II)若點(diǎn)的坐標(biāo)為,不過(guò)原點(diǎn)的直線與橢圓相交于兩點(diǎn),設(shè)線段的中點(diǎn)為,點(diǎn)到直線的距離為,且三點(diǎn)共線.求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案