精英家教網 > 高中數學 > 題目詳情

【題目】如圖,建立平面直角坐標系xOyx軸在地平面上,y軸垂直于地平面,單位長度為1千米.某炮位于坐標原點.已知炮彈發(fā)射后的軌跡在方程ykx (1+k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關.炮的射程是指炮彈落地點的橫坐標.

設在第一象限有一飛行物(忽略其大小),其飛行高度為3.2千米,試問它的橫坐標a不超過多少時,炮彈可以擊中它?請說明理由.

【答案】詳見解析.

【解析】試題分析:求炮彈擊中目標時的橫坐標的最大值,炮彈可擊中目標存在k>0,使3.2=ka (1+k2)a2成立,因為k>0關于k的方程a2k2-20aka2+64=0有正根判別式Δ=(-20a)2-4a2(a2+64)≥0解不等式得解.

試題解析:

因為a>0,所以炮彈可擊中目標存在k>0,使3.2=ka (1+k2)a2成立關于k的方程a2k2-20aka2+64=0有正根由韋達定理滿足兩根之和大于0,兩根之積大于0,故只需判別式Δ=(-20a)2-4a2(a2+64)≥0a≤6.

所以當a不超過6(千米)時,可擊中目標.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖四邊形ABCD為菱形,GACBD的交點BE⊥平面ABCD,

(1)證明平面AEC⊥平面BED.

(2)若∠ABC=120°,AEEC,三棱錐E-ACD的體積為,求該三棱錐的側面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】線段AB的兩端在直二面角αlβ的兩個面內,并與這兩個面都成30°角,則異面直線ABl所成的角是(  )

A. 30° B. 45°

C. 60° D. 75°

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近年來,我國電子商務蓬勃發(fā). 2016年“618”期間,某購平臺的銷售業(yè)績高達516億元人民幣,與此同時,相關管理部門推出了針對該網購平臺的商品和服務的評價系統(tǒng). 評價系統(tǒng)中選出200次成功交易,并對其評價進行統(tǒng)計,網購者對商品的滿意率為0.6,對服務的滿意率為0.75,其中對商品和服務滿意的交易為80次.

(Ⅰ) 根據已知條件完成下面列聯表,并回答能有99%的把握認為“網購者對商品滿意與服務滿意之間有關系”

對服務滿意

對服務不滿意

合計

對商品滿意

80

對商品不滿意

合計

200

(Ⅱ) 若將頻率視為概率,某人在該網購平臺上進行的3次購物中,設對商品和服務滿意的次數為隨機變量,求的分布列和數學期望.

附:(其中為樣本容量

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數
(Ⅰ)若f(1)=0,求函數fx)的最大值;
(Ⅱ)令,討論函數gx)的單調區(qū)間;
(Ⅲ)若a=2,正實數x1x2滿足證明

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】國際奧委會將于2017年9月15日在秘魯利馬召開130次會議決定2024年第33屆奧運

會舉辦地。目前德國漢堡、美國波士頓等申辦城市因市民擔心賽事費用超支而相繼退出。某機構為調查我國公民對申辦奧運會的態(tài)度,選了某小區(qū)的100位居民調查結果統(tǒng)計如下:

支持

不支持

合計

年齡不大于50歲

80

年齡大于50歲

10

合計

70

100

(1)根據已有數據,把表格數據填寫完整;

(2)能否在犯錯誤的概率不超過5%的前提下認為不同年齡與支持申辦奧運無關?

(3)已知在被調查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現從這5名女性中隨機抽取3人,求至多有1位教師的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率為,以原點O為圓心,橢圓的短半軸長為半徑的圓與直線x﹣y+=0相切.

(Ⅰ)求橢圓C的標準方程;

(Ⅱ)若直線l:y=kx+m與橢圓C相交于A、B兩點,且kOAkOB=,判斷△AOB的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知是定義域為的奇函數,且.

(1)求的解析式;

(2)證明在區(qū)間上是增函數;

(3)求不等式的解集.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示單位:cm,四邊形ABCD是直角梯形,求圖中陰影部分繞AB旋轉一周所成幾何體的表面積和體積

查看答案和解析>>

同步練習冊答案