【題目】設(shè)實(shí)數(shù),滿足約束條件,則的取值范圍是( )
A. B. C. D.
【答案】A
【解析】分析:作出題中不等式組表示的平面區(qū)域,得到如圖的△ABC及其內(nèi)部,再將目標(biāo)函數(shù)z=|x|﹣y對(duì)應(yīng)的直線進(jìn)行平移,觀察直線在y軸上的截距變化,即可得出z的取值范圍.
詳解:作出實(shí)數(shù)x,y滿足約束條件表示的平面區(qū)域,得到如圖的△ABC及其內(nèi)部,
其中A(﹣1,﹣2),B(0,),O(0,0).
設(shè)z=F(x,y)=|x|﹣y,將直線l:z=|x|﹣y進(jìn)行平移,
觀察直線在y軸上的截距變化,
當(dāng)x≥0時(shí),直線為圖形中的紅色線,可得當(dāng)l經(jīng)過B與O點(diǎn)時(shí),
取得最值z(mì)∈[0,],
當(dāng)x<0時(shí),直線是圖形中的藍(lán)色直線,
經(jīng)過A或B時(shí)取得最值,z∈[﹣,3]
綜上所述,z∈[﹣,3].
故答案為:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓O的直徑,C為圓周上一點(diǎn),過C作圓O的切線l,過A作直線l的垂線AD,D為垂足,AD與圓O交于點(diǎn)E.
(1)求證:ABDE=BCCE;
(2)若AB=8,BC=4,求線段AE的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的公差,數(shù)列滿足,集合.
(1)若,,求集合;
(2)若,求使得集合恰有兩個(gè)元素;
(3)若集合恰有三個(gè)元素,,T是不超過5的正整數(shù),求T的所有可能值,并寫出與之相應(yīng)的一個(gè)等差數(shù)列的通項(xiàng)公式及集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程是為參數(shù),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)寫出的極坐標(biāo)方程和的直角坐標(biāo)方程;
(2)已知點(diǎn)、的極坐標(biāo)分別是、,直線與曲線相交于P、Q兩點(diǎn),射線OP與曲線相交于點(diǎn)A,射線OQ與曲線相交于點(diǎn)B,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.已知a>b,a=5,c=6,sinB= .
(Ⅰ)求b和sinA的值;
(Ⅱ)求sin(2A+ )的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答下列問題:
(1)求平行于直線3x+4y- 2=0,且與它的距離是1的直線方程;
(2)求垂直于直線x+3y -5=0且與點(diǎn)P( -1,0)的距離是的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知sinA+ cosA=0,a=2 ,b=2.
(Ⅰ)求c;
(Ⅱ)設(shè)D為BC邊上一點(diǎn),且AD⊥AC,求△ABD的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com