【題目】在平面直角坐標(biāo)系中,定義為兩點(diǎn)、的“切比雪夫距離”,又設(shè)點(diǎn)及上任意一點(diǎn),稱(chēng)的最小值為點(diǎn)到直線(xiàn)的“切比雪夫距離”,記作,給出四個(gè)命題,正確的是________.
①對(duì)任意三點(diǎn)、、,都有;
② 到原點(diǎn)的“切比雪夫距離”等于的點(diǎn)的軌跡是正方形;
③ 已知點(diǎn)和直線(xiàn),則;
④ 定點(diǎn)、,動(dòng)點(diǎn)滿(mǎn)足,則點(diǎn)的軌跡與直線(xiàn)(為常數(shù))有且僅有個(gè)公共點(diǎn).
【答案】①②③④
【解析】
①討論、、三點(diǎn)共線(xiàn),以及不共線(xiàn)的情況,結(jié)合圖象和新定義,即可判斷;
②運(yùn)用新定義,求得點(diǎn)的軌跡方程,即可判斷;
③設(shè)點(diǎn)是直線(xiàn)上一點(diǎn),且點(diǎn),可得,討論和的大小,可得距離,再由函數(shù)的性質(zhì),可得最小值;
④討論點(diǎn)在坐標(biāo)軸上和各個(gè)象限的情況,求得軌跡方程,即可判斷.
①對(duì)任意三點(diǎn)、、,若它們共線(xiàn),設(shè)、、,
如下圖,結(jié)合三角形相似可得或,或,或,則;
若、或、對(duì)調(diào),可得;
若、、不共線(xiàn),且中為銳角或鈍角,由矩形或矩形,
;
則對(duì)任意的三點(diǎn)、、,都有,命題①正確;
②到原點(diǎn)的“切比雪夫距離”等于的點(diǎn),即為,若,則;
若,則,故所求軌跡是正方形,命題②正確;
③設(shè)點(diǎn)是直線(xiàn)上一點(diǎn),且,可得,
由,解得,即有.
當(dāng)時(shí),取得最小值;
由,解得或,即有,
的取值范圍是,無(wú)最值,
所以,、兩點(diǎn)的“切比雪夫距離”的最小值為,命題③正確;
④定點(diǎn)、,動(dòng)點(diǎn),滿(mǎn)足,
可得不在上,在線(xiàn)段間成立,可得,解得.
由對(duì)稱(chēng)性可得也成立,即有兩點(diǎn)滿(mǎn)足條件;
若在第一象限內(nèi),滿(mǎn)足,即為,為射線(xiàn),
由對(duì)稱(chēng)性可得在第二象限、第三象限和第四象限也有一條射線(xiàn),
則點(diǎn)的軌跡與直線(xiàn)(為常數(shù))有且僅有個(gè)公共點(diǎn),命題④正確.
故答案為:①②③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,,,O為AC的中點(diǎn).
(1)證明:平面ABC;
(2)若點(diǎn)M在棱BC上,且,求點(diǎn)C到平面POM的距離.
(3)若點(diǎn)M在棱BC上,且二面角為30°,求PC與平面PAM所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了解廣告投入對(duì)銷(xiāo)售收益的影響,在若干地區(qū)各投入萬(wàn)元廣告費(fèi)用,并將各地的銷(xiāo)售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開(kāi)始計(jì)數(shù)的. [附:回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)公式分別為.]
(1)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;
(2)試估計(jì)該公司投入萬(wàn)元廣告費(fèi)用之后,對(duì)應(yīng)銷(xiāo)售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);
(3)該公司按照類(lèi)似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:
廣告投入 (單位:萬(wàn)元) | 1 | 2 | 3 | 4 | 5 |
銷(xiāo)售收益 (單位:萬(wàn)元) | 2 | 3 | 2 | 7 |
由表中的數(shù)據(jù)顯示, 與之間存在著線(xiàn)性相關(guān)關(guān)系,請(qǐng)將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線(xiàn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為等差數(shù)列的公差,數(shù)列的前項(xiàng)和,滿(mǎn)足(),且,若實(shí)數(shù)(,),則稱(chēng)具有性質(zhì).
(1)請(qǐng)判斷、是否具有性質(zhì),并說(shuō)明理由;
(2)設(shè)為數(shù)列的前項(xiàng)和,若是單調(diào)遞增數(shù)列,求證:對(duì)任意的(,),實(shí)數(shù)都不具有性質(zhì);
(3)設(shè)是數(shù)列的前項(xiàng)和,若對(duì)任意的,都具有性質(zhì),求所有滿(mǎn)足條件的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,,,動(dòng)點(diǎn)滿(mǎn)足:直線(xiàn)與直線(xiàn)的斜率之積恒為,記動(dòng)點(diǎn)的軌跡為曲線(xiàn).
(1)求曲線(xiàn)的方程;
(2)若點(diǎn)位于第一象限,過(guò)點(diǎn),分別作直線(xiàn),直線(xiàn),直線(xiàn),交于點(diǎn).
①若點(diǎn)的橫坐標(biāo)為-1,求點(diǎn)的坐標(biāo);
②直線(xiàn)與曲線(xiàn)交于點(diǎn),且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),證明:在區(qū)間上是增函數(shù);
(2)當(dāng),函數(shù)的零點(diǎn)個(gè)數(shù),并說(shuō)明理由;
(3)求函數(shù)的對(duì)稱(chēng)中心,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù),有下列五個(gè)命題:
①若存在反函數(shù),且與反函數(shù)圖象有公共點(diǎn),則公共點(diǎn)一定在直線(xiàn)上;
②若在上有定義,則一定是偶函數(shù);
③若是偶函數(shù),且有解,則解的個(gè)數(shù)一定是偶數(shù);
④若是函數(shù)的周期,則,也是函數(shù)的周期;
⑤是函數(shù)為奇函數(shù)的充分不必要條件。
從中任意抽取一個(gè),恰好是真命題的概率為 ( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),實(shí)數(shù)滿(mǎn)足;
(1)當(dāng)函數(shù)的定義域?yàn)?/span>時(shí),求的值域;
(2)求函數(shù)關(guān)系式,并求函數(shù)的定義域;
(3)在(2)的結(jié)論中,對(duì)任意,都存在,使得成立,求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若對(duì)任意,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com