如圖,在△ABC中,∠CAB=∠CBA=30°,AC、BC邊上的高分別為BD、AE,則以A、B為焦點(diǎn),且過(guò)D、E的橢圓與雙曲線的離心率的倒數(shù)和為    
【答案】分析:由題意知在以A,B為焦點(diǎn),且過(guò)D,E的橢圓中,離心率=,以A,B為焦點(diǎn),過(guò)D,E的雙曲線中,離心率==+1,由此能求出橢圓與雙曲線的離心率的倒數(shù)和.
解答:解:根據(jù)題意,設(shè)AB=2c,則AE=BD=c,BE=AD=c
∴在以A,B為焦點(diǎn),且過(guò)D,E的橢圓中,離心率=,
以A,B為焦點(diǎn),且過(guò)D,E的雙曲線中,離心率==+1,
橢圓與雙曲線的離心率的倒數(shù)和為:

故答案為:
點(diǎn)評(píng):本題考查雙曲線的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,注意公式的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,已知∠ABC=90°,AB上一點(diǎn)E,以BE為直徑的⊙O恰與AC相切于點(diǎn)D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直徑BE的長(zhǎng);
(2)計(jì)算:△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,D是邊AC上的點(diǎn),且AB=AD,2AB=
3
BD,BC=2BD,則sinC的值為( 。
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,設(shè)
AB
=a
AC
=b
,AP的中點(diǎn)為Q,BQ的中點(diǎn)為R,CR的中點(diǎn)恰為P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC為鄰邊,AP為對(duì)角線,作平行四邊形ANPM,求平行四邊形ANPM和三角形ABC的面積之比
S平行四邊形ANPM
S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,∠B=45°,D是BC邊上的一點(diǎn),AD=5,AC=7,DC=3.
(1)求∠ADC的大。
(2)求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,已知
BD
=2
DC
,則
AD
=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案