建立如圖所示的直角坐標系,
設平面
的一個法向量
,則
,即
,
,
平面
與平面
間的距離
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知向量
,可構(gòu)成空間向量的一個基底,若
,在向量已有的運算法則的基礎上,新定義一種運算
,顯然
的結(jié)果仍為一向量,記作
.
(1) 求證:向量
為平面
的法向量;
(2) 求證:以
為邊的平行四邊形
的面積等于
;
(3) 將四邊形
按向量
平移,得到一個平行六面體
,試判斷平行六面體的體積
與
的大小.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如右圖,已知
ABCD為正方形,
,
,
.
(1)求證:平面
平面
;
(2)求點
A到平面
BEF的距離;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知
是邊長為2的等邊三角形,
平面
,
,
是
上一動點.
(1)若
是
的中點,求直線
與平面
所成的角的正弦值;
(2)
在運動過程中,是否有可能使
平面
?請說明理
由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知棱長為1的正方體ABCD-A1B1C1D1中,E是A1B1的中點,求直線AE與平面ABC1D1所成角的正弦值 .
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,平面
平面
是正方形,
是矩形,且
,
是
的中點.
(1)求
與平面
所成角
的正弦值;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖所示,在幾何體ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,點F是AE的中點.求AB與平面BDF所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)如圖,在四棱錐
P-
ABCD中,底面
ABCD是邊長為1的正方形,側(cè)棱
PA的長為2,且
PA與
AB、
AD的夾角都等于60
0,
是
PC的中點,設
.
(1)試用
表示出向量
;
(2)求
的長.
查看答案和解析>>