精英家教網 > 高中數學 > 題目詳情

【題目】已知拋物線的焦點到直線的距離為

1)求拋物線的方程;

2)如圖,若,直線與拋物線相交于兩點,與直線相交于點,且,求面積的取值范圍.

【答案】1;(2.

【解析】

(1)寫出拋物線的焦點坐標,根據點到直線的距離公式列方程,解方程可得的值,即得拋物線的方程;

2)設,直線.將直線的方程與拋物線的方程聯(lián)立,利用根與系數的關系可得.求出點到直線的距離,根據弦長公式求出,故的面積,可求面積的取值范圍.

(1)拋物線的焦點坐標為,

焦點到直線的距離為,

.

拋物線的方程為

2)由題意可設,直線

將直線的方程代入拋物線的方程,消去,得

直線與拋物線相交于兩點,

,則.

是線段的中點,,

代入,解得

,,,

直線的方程為.

到直線的距離,

,,

,則

,

,即

面積的取值范圍為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】春秋以前中國已有“抱甕而出灌”的原始提灌方式,使用提水吊桿——桔槔,后發(fā)展成轆轤.19世紀末,由于電動機的發(fā)明,離心泵得到了廣泛應用,為發(fā)展機械提水灌溉提供了條件.圖形如圖所示為灌溉抽水管道在等高圖的上垂直投影,在A處測得B處的仰角為37度,在A處測得C處的仰角為45度,在B處測得C處的仰角為53度,A點所在等高線值為20米,若BC管道長為50米,則B點所在等高線值為( )(參考數據

A.30B.50C.60D.70

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】第二屆中國國際進口博覽會于2019115日至10日在上海國家會展中心舉行.它是中國政府堅定支持貿易自由化和經濟全球化,主動向世界開放市場的重要舉措,有利于促進世界各國加強經貿交流合作,促進全球貿易和世界經濟增長,推動開放世界經濟發(fā)展.某機構為了解人們對“進博會”的關注度是否與性別有關,隨機抽取了100名不同性別的人員(男、女各50名)進行問卷調查,并得到如下列聯(lián)表:

男性

女性

合計

關注度極高

35

14

49

關注度一般

15

36

51

合計

50

50

100

1)根據列聯(lián)表,能否有99.9%的把握認為對“進博會”的關注度與性別有關;

2)若從關注度極高的被調查者中按男女分層抽樣的方法抽取7人了解他們從事的職業(yè)情況,再從7人中任意選取2人談談關注“進博會”的原因,求這2人中至少有一名女性的概率.

附:.

參考數據:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司有9個連在一起的停車位,現有5輛不同型號的轎車需停放,若要求剩余的4個車位中恰有3個連在起,則不同的停放方法有________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市數學教研室對全市201815000名的高中生的學業(yè)水平考試的數學成績進行調研,隨機選取了200名高中生的學業(yè)水平考試的數學成績作為樣本進行分析,將結果列成頻率分布表如下:

數學成績

頻數

頻率

5

0.025

15

0.075

50

0.25

70

0.35

45

0.225

15

0.075

合計

200

1

根據學業(yè)水平考試的數學成績將成績分為“優(yōu)秀”、“合格”、“不合格”三個等級,其中成績大于或等于80分的為“優(yōu)秀”,成績小于60分的為“不合格”,其余的成績?yōu)椤昂细瘛?/span>.

1)根據頻率分布表中的數據,估計全市學業(yè)水平考試的數學成績的眾數、中位數(精確到0.1);

2)市數學教研員從樣本中又隨機選取了名高中生的學業(yè)水平考試的數學成績,如果這名高中生的學業(yè)水平考試的數學成績的等級情況恰好與按照三個等級分層抽樣所得的結果相同,求的最小值;

3)估計全市2018級高中生學業(yè)水平考試“不合格”的人數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在極坐系中,點繞極點順時針旋轉角得到點.為原點,極軸為軸非負半軸,并取相同的單位長度建立平面直角坐標系,曲線逆時針旋轉得到曲線.

1)求曲線的極坐標方程和曲線的直角坐標方程;

2)點的極坐標為,直線過點且與曲線交于兩點,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】雙紐線最早于1694年被瑞士數學家雅各布·伯努利用來描述他所發(fā)現的曲線.在平面直角坐標系中,把到定點,距離之積等于)的點的軌跡稱為雙紐線C.已知點是雙紐線C上一點,下列說法中正確的有(

①雙紐線C關于原點O中心對稱; ;

③雙紐線C上滿足的點P有兩個; 的最大值為.

A.①②B.①②④C.②③④D.①③

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線的極坐標方程是,以極點為原點,極軸為軸非負半軸建立平面直角坐標系,直線的參數方程為為參數).

1)寫出曲線的直角坐標方程和直線的普通方程;

2)在(1)中,設曲線經過伸縮變換得到曲線,設曲線上任意一點為,當點到直線的距離取最大值時,求此時點的直角坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》是我國古代內容極為豐富的數學名著,書中有一個“引葭赴岸”問題:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,適與岸齊.問水深、葭長各幾何?”其意思為“今有水池1丈見方(即尺),蘆葦生長在水的中央,長出水面的部分為1.將蘆葦向池岸牽引,恰巧與水岸齊接(如圖所示).試問水深、蘆葦的長度各是多少?假設,現有下述四個結論:

①水深為12尺;②蘆葦長為15尺;③;④.

其中所有正確結論的編號是(

A.①③B.①③④C.①④D.②③④

查看答案和解析>>

同步練習冊答案