如圖,已知橢圓=1(a>b>0),F(xiàn)1、F2分別為橢圓的左、右焦點,A為橢圓的上頂點,直線AF2交橢圓于另一點B.
(1)若∠F1AB=90°,求橢圓的離心率;
(2)若=2,·=,求橢圓的方程.
科目:高中數(shù)學 來源: 題型:解答題
如圖,橢圓E:=1(a>b>0)的左焦點為F1,右焦點為F2,離心率e=.過F1的直線交橢圓于A、B兩點,且△ABF2的周長為8.
(1)求橢圓E的方程;
(2)設動直線l:y=kx+m與橢圓E有且只有一個公共點P,且與直線x=4相交于點Q.試探究:在坐標平面內(nèi)是否存在定點M,使得以PQ為直徑的圓恒過點M?若存在,求出點M的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系xoy中,以點P為圓心的圓與圓x2+y2-2y=0外切且與x軸相切(兩切點不重合).
(1)求動點P的軌跡方程;
(2)若直線mx一y+2m+5=0(m∈R)與點P的軌跡交于A、B兩點,問:當m變化時,以線段AB為直徑的圓是否會經(jīng)過定點?若會,求出此定點;若不會,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
根據(jù)下列條件求橢圓的標準方程:
(1)兩準線間的距離為,焦距為2;
(2)已知P點在以坐標軸為對稱軸的橢圓上,點P到兩焦點的距離分別為和,過P點作長軸的垂線恰好過橢圓的一個焦點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知中心在原點的雙曲線的右焦點為,實軸長.
(1)求雙曲線的方程
(2)若直線與雙曲線恒有兩個不同的交點,且為銳角(其中為原點),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切。
(1)求橢圓C的方程;
(2)若過點M(2,0)的直線與橢圓C交于兩點A和B,設P為橢圓上一點,且滿足·(O為坐標原點),當 時,求實數(shù)t取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的中心在原點,焦點在軸上,長軸長是短軸長的倍,其上一點到右焦點的最短距離為
(1)求橢圓的標準方程;
(2)若直線交橢圓于兩點,當時求直線的方程
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知直線l經(jīng)過點(1,0)且一個方向向量d=(1,1).橢圓C:=1(m>1)的左焦點為F1.若直線l與橢圓C交于A,B兩點,滿足·=0,求實數(shù)m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com