【題目】已知拋物線的焦點(diǎn)坐標(biāo)為
(1)求拋物線方程;
(2)過直線上一點(diǎn)作拋物線的切線切點(diǎn)為A,B
①設(shè)直線PA、AB、PB的斜率分別為,求證:成等差數(shù)列;
②若以切點(diǎn)B為圓心r為半徑的圓與拋物線C交于D,E兩點(diǎn)且D,E關(guān)于直線AB對稱,求點(diǎn)P橫坐標(biāo)的取值范圍.
【答案】(1);(2)①證明見解析;②.
【解析】
(1)根據(jù)焦點(diǎn)求出p即可寫出拋物線方程;(2)①設(shè),利用導(dǎo)數(shù)的幾何意義用、表示出、,再用、表示出,由即可證明;②求出直線AP、直線BP的方程,聯(lián)立求出兩直線的交點(diǎn)坐標(biāo)P,由點(diǎn)P在直線上進(jìn)一步化簡直線AP的方程,聯(lián)立拋物線方程與直線DE的方程得到關(guān)于x的一元二次方程,根據(jù)題意,再由點(diǎn)H在直線AB上將不等式轉(zhuǎn)化為關(guān)于t的不等式求解即可.
(1)由題意知,,拋物線方程為;
(2)①設(shè),
因為,,所以,所以,,
則,,
所以,即成等差數(shù)列.
②直線AP的方程為,
同理直線BP的方程為,
則兩直線的交點(diǎn)坐標(biāo),
代入直線,得①,
直線AB的方程為,
①式代入上式可得,
因為,所以直線AB的方程為,
1)若則拋物線上不存在兩點(diǎn)關(guān)于直線AB對稱,
2)若,設(shè)為拋物線上關(guān)于直線AB對稱的兩點(diǎn),
此時
設(shè)DE方程為,DE與直線AB交于點(diǎn),
,
,,
所以,,
因為H點(diǎn)在直線AB上,
所以代入式得,解得.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)分別寫出直線的普通方程與曲線的直角坐標(biāo)方程;
(2)已知點(diǎn),直線與曲線相交于兩點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形且∥,側(cè)面為等邊三角形,且平面平面.
(1)求平面與平面所成的銳二面角的大。
(2)若,且直線與平面所成角為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在①,②,③這三個條件中任選一個,補(bǔ)充在下面問題中,并解答.
已知等差數(shù)列的公差為,等差數(shù)列的公差為.設(shè)分別是數(shù)列的前項和,且, ,
(1)求數(shù)列的通項公式;
(2)設(shè),求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記無窮數(shù)列的前n項,,…,的最大項為,第n項之后的各項,,…的最小項為,.
(1)若數(shù)列的通項公式為,寫出,,;
(2)若數(shù)列的通項公式為,判斷是否為等差數(shù)列,若是,求出公差;若不是,請說明理由;
(3)若數(shù)列為公差大于零的等差數(shù)列,求證:是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,
(1)若展開式中第5項,第6項與第7項的二項式系數(shù)成等差數(shù)列,求展開式中二項式系數(shù)最大項
的系數(shù);
(2)若展開式前三項的二項式系數(shù)和等于79,求展開式中系數(shù)最大的項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確的是( )
A.在中,,
B.在銳角中,不等式恒成立
C.在中,若,則必是等腰直角三角形
D.在中,若,,則必是等邊三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的各項均為正數(shù),Sn為等差數(shù)列{an}的前n項和,.
(1)求數(shù)列{an}的通項an;
(2)設(shè)bn=an3n,求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱各條棱的長度均相等,為的中點(diǎn),分別是線段和線段的動點(diǎn)(含端點(diǎn)),且滿足,當(dāng)運(yùn)動時,下列結(jié)論中不正確的是
A. 在內(nèi)總存在與平面平行的線段
B. 平面平面
C. 三棱錐的體積為定值
D. 可能為直角三角形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com