【題目】解關于的不等式.

【答案】a0時,不等式的解集是(,1);

a0時,不等式的解集是(﹣∞,1);

時,不等式的解集為.

時,不等式的解集是(﹣∞,1+∞);

a1時,不等式的解集是(﹣∞,1,+∞).

【解析】

討論a0的大小,將不等式進行因式分解,然后討論兩根的大小,即可求出不等式的解集.

時,原不等式可化為,所以原不等式的解集為.

時,判別式.

(1)當時,判別式,原不等式可化為

,所以原不等式的解集為.

(2)當時,原不等式可化為,此時,所以原不等式的解集為.(3)當時,原不等式可化為,

此時,所以原不等式的解集為.

(4)當時,原不等式可化為,此時,

所以原不等式的解集為.

綜上,a0時,不等式的解集是(1);

a0時,不等式的解集是(﹣∞1);

時,不等式的解集為.

時,不等式的解集是(﹣∞,1,+∞);

a1時,不等式的解集是(﹣∞1,+∞).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖是某單位職工的月收入情況畫出的樣本頻率分布直方圖,已知圖中第一組的頻數(shù)為4 000,請根據(jù)該圖提供的信息,解答下列問題.

(1)為了分析職工的收入與年齡、學歷等方面的關系,必須從樣本中按月收入用分層抽樣方法抽出100人作進一步分析,則月收入在[1 500,2 000)的這組中應抽取多少人?

(2)試估計樣本數(shù)據(jù)的中位數(shù)與平均數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,是雙曲線C的左,右焦點,O是坐標原點C的一條漸近線的垂線,垂足為P,若,則C的離心率為  

A. B. 2 C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓的中心在原點,焦點在軸上,長軸長是短軸長的2倍且經過點,平行于的直線軸上的截距為,直線交橢圓于兩個不同點.

1求橢圓的方程;

2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某農場計劃種植某種新作物,為此對這種作物的兩個品種(分別稱為品種甲和品種乙)進行田間試驗.選取兩大塊地,每大塊地分成小塊地,在總共小塊地中.隨機選小塊地種植品種甲,另外小塊地種植品種乙.

)假設,求第一大塊地都種植品種甲的概率.

)試驗時每大塊地分成小塊.即,試驗結束后得到品種甲和品種乙在各個小塊地上的每公頃產量(單位)如下表:

品種甲

品種乙

分別求品種甲和品種乙的每公頃產量的樣本平均數(shù)和樣本方差;根據(jù)試驗結果,你認為應該種植哪一品種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某職稱晉級評定機構對參加某次專業(yè)技術考試的100人的成績進行了統(tǒng)計,繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級成功,否則晉級失。M分為100分).

(1)求圖中的值;

(2)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有85%的把握認為“晉級成功”與性別有關?

(參考公式: ,其中

(3)將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進行約談,記這4人中晉級失敗的人數(shù)為,求的分布列與數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線Cρsin2θ2acos θ(a>0),過點P(2,-4)的直線l (t為參數(shù))與曲線C相交于M,N兩點.

(1)求曲線C的直角坐標方程和直線l的普通方程;

(2)|PM|,|MN|,|PN|成等比數(shù)列,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E: 經過點P(2,1),且離心率為

(Ⅰ)求橢圓的標準方程;

(Ⅱ)設O為坐標原點,在橢圓短軸上有兩點M,N滿足,直線PM、PN分別交橢圓于A,B.探求直線AB是否過定點,如果經過定點請求出定點的坐標,如果不經過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于實數(shù)x的一元二次方程

a是從區(qū)間中任取的一個整數(shù),b是從區(qū)間中任取的一個整數(shù),求上述方程有實根的概率.

a是從區(qū)間任取的一個實數(shù),b是從區(qū)間任取的一個實數(shù),求上述方程有實根的概率.

查看答案和解析>>

同步練習冊答案