【題目】已知函數(shù)(、為常數(shù)).若函數(shù)與的圖象在處相切,
(Ⅰ)求的解析式;
(Ⅱ)設(shè)函數(shù) ,若在上的最小值為,求實(shí)數(shù)的值;
(Ⅲ)設(shè)函數(shù),若在上恒成立,求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ);(Ⅱ);(Ⅲ).
【解析】試題分析:(Ⅰ)求出函數(shù)的圖象在處相切,所以即,求出值,即可求得的解析式;
(Ⅱ)化簡(jiǎn),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,根據(jù)單調(diào)性可得是函數(shù)在上的極小值點(diǎn),也就是它的最小值點(diǎn),所以,從而可得結(jié)果;(Ⅲ)原不等式等價(jià)于恒成立,令,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得,故要使恒成立,只要即可.
試題解析:(Ⅰ)由已知得
函數(shù)的圖象在處相切,
所以即,
解得,
故
(Ⅱ)得,
當(dāng)時(shí),,即在上為減函數(shù);
當(dāng)時(shí),,即在上為增函數(shù);
所以是函數(shù)在上的極小值點(diǎn),也就是它的最小值點(diǎn),
因此的最小值為
∴
(Ⅲ)在
上恒成立,即對(duì),恒成立,
令,則,
再令,則
故在上是減函數(shù),于是,
從而所以在上是增函數(shù),,
故要恒成立,只要,
所以實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為.
(1)求橢圓的方程式;
(2)已知?jiǎng)又本與橢圓相交于兩點(diǎn).
①若線段中點(diǎn)的橫坐標(biāo)為,求斜率的值;
②已知點(diǎn),求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】4月23日是“世界讀書日”,某中學(xué)在此期間開展了一系列的讀書教育活動(dòng),為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對(duì)其課外閱讀時(shí)間進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:min)的頻率分布直方圖,若將日均課外閱讀時(shí)間不低于60 min的學(xué)生稱為“書蟲”,低于60 min的學(xué)生稱為“懶蟲”,
(1)求x的值并估計(jì)全校3 000名學(xué)生中“書蟲”大概有多少名學(xué)生?(將頻率視為概率)
(2)根據(jù)已知條件完成下面2×2的列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為“書蟲”與性別有關(guān):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓: ,直線過定點(diǎn).
(Ⅰ)若與圓相切,求的方程;
(Ⅱ)若與圓相交于、兩點(diǎn),求的面積的最大值,并求此時(shí)直線的方程.(其中點(diǎn)是圓的圓心)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面結(jié)論正確的是( )
①“所有2的倍數(shù)都是4的倍數(shù),某數(shù)是2的倍數(shù),則一定是4的倍數(shù)”,這是三段論推理,但其結(jié)論是錯(cuò)誤的.
②在類比時(shí),平面中的三角形與空間中的平行六面體作為類比對(duì)象較為合適.
③由平面三角形的性質(zhì)推測(cè)空間四面體的性質(zhì),這是一種合情推理.
④一個(gè)數(shù)列的前三項(xiàng)是1,2,3,那么這個(gè)數(shù)列的通項(xiàng)公式必為.
A. ①③ B. ②③ C. ③④ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓x2+=1(0<b<1)的左焦點(diǎn)為F,左、右頂點(diǎn)分別為A、C,上頂點(diǎn)為B,過F、B、C三點(diǎn)作圓P,其中圓心P的坐標(biāo)為(m,n).
(1)若FC是圓P的直徑,求橢圓的離心率;
(2)若圓P的圓心在直線x+y=0上,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),橢圓: 的左焦點(diǎn)是,離心率為,且上任意一點(diǎn)到的最短距離為.
(1)求的方程;
(2)過點(diǎn)的直線(不過原點(diǎn))與交于兩點(diǎn)、, 為線段的中點(diǎn).
(i)證明:直線與的斜率乘積為定值;
(ii)求面積的最大值及此時(shí)的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市電力公司為了制定節(jié)電方案,需要了解居民用電情況,通過隨機(jī)抽樣,電力公司獲得了戶居民的月平均用電量,分為六組制出頻率分布表和頻率分布直方圖(如圖所示).
組號(hào) | 分組 | 頻數(shù) | 頻率 |
(1)求, 的值;
(2)為了解用電量較大的用戶用電情況,在第、兩組用分層抽樣的方法選取戶.
①求第、兩組各取多少戶?
②若再?gòu)倪@戶中隨機(jī)選出戶進(jìn)行入戶了解用電情況,求這戶中至少有一戶月平均用電量在范圍內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天氣預(yù)報(bào)說,在今后的三天中,每一天下雨的概率均為40%,現(xiàn)部門通過設(shè)計(jì)模擬實(shí)驗(yàn)的方法研究三天中恰有兩天下雨的概率:先利用計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),用1,2,3,4表示下雨,其余6個(gè)數(shù)字表示不下雨:產(chǎn)生了20組隨機(jī)數(shù):
907 | 966 | 191 | 925 | 271 | 932 | 812 | 458 | 569 | 683 |
431 | 257 | 393 | 027 | 556 | 488 | 730 | 113 | 537 | 989 |
則這三天中恰有兩天降雨的概率約為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com