焦點在x軸上的橢圓的離心率的最大值為(    )
A.B.C.D.
B

試題分析:焦點在x軸上,所以
,當且僅當時等號成立
點評:求橢圓離心率關鍵是找到關于的其次方程或其次不等式,進而求解可得離心率的值或范圍
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的左、右焦點分別是,Q是橢圓外的動點,滿足.點是線段與該橢圓的交點,點T是的中點.

(Ⅰ)設為點的橫坐標,證明;
(Ⅱ)求點T的軌跡的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的左頂點,過右焦點且垂直于長軸的弦長為
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點的直線與橢圓交于點,與軸交于點,過原點與平行的直線與橢圓交于點,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

以雙曲線的焦點為頂點,頂點為焦點的橢圓的標準方程是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓與拋物線的焦點均在軸上,的中心及的頂點均為原點,從每條曲線上各取兩點,將其坐標記錄于下表:










(Ⅰ)求曲線、的標準方程;
(Ⅱ)設直線過拋物線的焦點,與橢圓交于不同的兩點,當時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的中心在坐標原點,焦點在軸上,其左、右焦點分別為、,短軸長為,點在橢圓上,且滿足的周長為6.
(Ⅰ)求橢圓的方程;;
(Ⅱ)設過點的直線與橢圓相交于A、B兩點,試問在x軸上是否存在一個定點M使恒為定值?若存在求出該定值及點M的坐標,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知動點到點的距離與到直線的距離之比為定值,記的軌跡為

(1)求的方程,并畫出的簡圖;
(2)點是圓上第一象限內(nèi)的任意一點,過作圓的切線交軌跡兩點.
(i)證明:;
(ii)求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

下列說法中,正確的有        
①若點是拋物線上一點,則該點到拋物線的焦點的距離是;
②設為雙曲線的兩個焦點,為雙曲線上一動點,,則的面積為;
③設定圓上有一動點,圓內(nèi)一定點的垂直平分線與半徑的交點為點,則的軌跡為一橢圓;
④設拋物線焦點到準線的距離為,過拋物線焦點的直線交拋物線于A、B兩點,則、成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設橢圓的左、右焦點分別為,為橢圓上異于長軸端點的一點,,△的內(nèi)心為I,則(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案