【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為[40,50),[50,60),…,[80,90),[90,100]
(1)求頻率分布直方圖中a的值;
(2)估計該企業(yè)的職工對該部門評分不低于80的概率;
(3)從評分在[40,60)的受訪職工中,隨機抽取2人,求此2人的評分恰好有一人在[40,50)的概率.
【答案】
(1)解:因為(0.004+a+0.018+0.022×2+0.028)×10=1,
解得a=0.006
(2)解:由已知的頻率分布直方圖可知,
50名受訪職工評分不低于80的頻率為(0.022+0.018)×10=0.4,
所以該企業(yè)職工對該部門評分不低于80的概率的估計值為0.4
(3)解:受訪職工中評分在[50,60)的有:
50×0.006×10=3(人),記為A1,A2,A3;
受訪職工評分在[40,50)的有:
50×0.004×10=2(人),記為B1,B2.
從這5名受訪職工中隨機抽取2人,所有可能的結(jié)果共有10種,
分別是{A1,A2},{A1,A3},{A1,B1},{A1,B2},
{A2,A3},{A2,B1},{A2,B2},{A3,B1},
{A3,B2},{B1,B2},
又因為所抽取2人的評分恰好有一人在[40,50)的結(jié)果有3種,
故所求的概率為: =
【解析】(1)利用頻率分布直方圖中的信息,所有矩形的面積和為1,得到a;(2)對該部門評分不低于80的即為90和100,的求出頻率,估計概率;(3)求出評分在[40,60]的受訪職工和評分都在[40,50]的人數(shù),隨機抽取2人,列舉法求出所有可能,利用古典概型公式解答.
【考點精析】解答此題的關(guān)鍵在于理解頻率分布直方圖的相關(guān)知識,掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐P﹣ABCD中,底面ABCD是邊長為2的菱形,∠DAB= ,AC∩BD=O,且PO⊥平面ABCD,PO= ,點F,G分別是線段PB,PD上的中點,E在PA上,且PA=3PE.
(Ⅰ)求證:BD∥平面EFG;
(Ⅱ)求直線AB與平面EFG的成角的正弦值;
(Ⅲ)請畫出平面EFG與四棱錐的表面的交線,并寫出作圖的步驟.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤ ),其圖象與直線y=﹣1相鄰兩個交點的距離為π,若f(x)>1對x∈(﹣ , )恒成立,則φ的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標系中,曲線C1:ρ=2cosθ,曲線C2:ρ=(ρcosθ+4)cosθ.以極點為坐標原點,極軸為x軸正半軸建立直角坐標系xOy,曲線C的參數(shù)方程為 (t為參數(shù)). (Ⅰ)求C1 , C2的直角坐標方程;
(Ⅱ)C與C1 , C2交于不同四點,這四點在C上的排列順次為H,I,J,K,求||HI|﹣|JK||的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù) 在(0,2)上存在兩個極值點,則a的取值范圍是( )
A.(﹣∞,﹣ )
B.(﹣∞,﹣ )
C.(﹣∞,﹣ )∪(﹣ ,﹣ )
D.(﹣e,﹣ )∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】AQI是表示空氣質(zhì)量的指數(shù),AQI指數(shù)值越小,表明空氣質(zhì)量越好,當AQI指數(shù)值不大于100時稱空氣質(zhì)量為“優(yōu)良”.如圖是某地4月1日到12日AQI指數(shù)值的統(tǒng)計數(shù)據(jù),圖中點A表示4月1日的AQI指數(shù)值為201,則下列敘述不正確的是( )
A.這12天中有6天空氣質(zhì)量為“優(yōu)良”
B.這12天中空氣質(zhì)量最好的是4月9日
C.這12天的AQI指數(shù)值的中位數(shù)是90
D.從4日到9日,空氣質(zhì)量越來越好
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體ABCDEF中,底面ABCD是邊長為2的菱形,∠BAD=60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,DE=2,M為線段BF上一點,且DM⊥平面ACE.
(1)求BM的長;
(2)求二面角A﹣DM﹣B的余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線E: (a>0,b>0)的右頂點為A,拋物線C:y2=8ax的焦點為F,若在E的漸近線上存在點P使得PA⊥FP,則E的離心率的取值范圍是( )
A.(1,2)
B.(1, ]
C.(2,+∞)
D.[ ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點坐標為F1(﹣1,0),F(xiàn)2(1,0),過F2垂直于長軸的直線交橢圓于P、Q兩點,且|PQ|=3.
(1)求橢圓的方程;
(2)過F2的直線l與橢圓交于不同的兩點M、N,則△F1MN的內(nèi)切圓的面積是否存在最大值?若存在求出這個最大值及此時的直線方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com