過雙曲線的右焦點(diǎn)作直線l交雙曲線與A,B兩點(diǎn).若使|AB|=λ(λ為實(shí)數(shù))的直線l恰有三條,則λ=( )
A.2
B.3
C.4
D.
【答案】分析:雙曲線的兩個(gè)頂點(diǎn)之間的距離是2,小于4,過拋物線的焦點(diǎn)一定有兩條直線使得交點(diǎn)之間的距離等于4,當(dāng)直線與實(shí)軸垂直時(shí),做出直線與雙曲線交點(diǎn)的縱標(biāo),得到也是一條長度等于4的線段.
解答:解:∵雙曲線的兩個(gè)頂點(diǎn)之間的距離是2,
∴過拋物線的焦點(diǎn)一定有兩條直線使得交點(diǎn)之間的距離等于4,
當(dāng)直線與實(shí)軸垂直時(shí),
有3-=1,
∴y=2,
∴直線AB的長度是4,
綜上可知有三條直線滿足|AB|=4,
∴λ=4.
故選C.
點(diǎn)評(píng):本題考查直線與雙曲線之間的關(guān)系問題,本題解題的關(guān)鍵是看清楚當(dāng)直線的斜率不存在,即直線與實(shí)軸垂直時(shí),要驗(yàn)證線段的長度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省資陽市高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

下列是有關(guān)直線與圓錐曲線的命題:
①過點(diǎn)(2,4)作直線與拋物線y2=8x有且只有一個(gè)公共點(diǎn),這樣的直線有2條;
②過拋物線y2=4x的焦點(diǎn)作一條直線與拋物線相交于A,B兩點(diǎn),它們的橫坐標(biāo)之和等于5,則這樣的直線有且僅有兩條;
③過點(diǎn)(3,1)作直線與雙曲線有且只有一個(gè)公共點(diǎn),這樣的直線有3條;
④過雙曲線的右焦點(diǎn)作直線l交雙曲線于A,B兩點(diǎn),若|AB|=4,則滿足條件的直線l有3條;
⑤已知雙曲線和點(diǎn)A(1,1),過點(diǎn)A能作一條直線l,使它與雙曲線交于P,Q兩點(diǎn),且點(diǎn)A恰為線段PQ的中點(diǎn).
其中說法正確的序號(hào)有    .(請(qǐng)寫出所有正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州一中高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

過雙曲線的右焦點(diǎn)作直線l交雙曲線與A,B兩點(diǎn),若|AB|=5則這樣的直線共有( )條
A.2
B.3
C.4
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2004年北京市朝陽區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:選擇題

過雙曲線的右焦點(diǎn)作直線l交雙曲線于A、B兩點(diǎn),如果|AB|=4,則這樣的直線的條數(shù)為( )
A.1條
B.2條
C.3條
D.4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年山西省太原五中高三(下)5月月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

過雙曲線的右焦點(diǎn)作直線l交雙曲線與A,B兩點(diǎn),若|AB|=5則這樣的直線共有( )條
A.2
B.3
C.4
D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案